
Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Volume 2D:
Instruction Set Reference, W-Z

NOTE: The Intel® 64 and IA-32 Architectures Software Developer's Manual consists of ten volumes:
Basic Architecture, Order Number 253665; Instruction Set Reference, A-L, Order Number 253666;
Instruction Set Reference, M-U, Order Number 253667; Instruction Set Reference, V, Order Number
326018; Instruction Set Reference, W-Z, Order Number 334569; System Programming Guide, Part 1,
Order Number 253668; System Programming Guide, Part 2, Order Number 253669; System
Programming Guide, Part 3, Order Number 326019; System Programming Guide, Part 4, Order Number
332831; Model-Specific Registers, Order Number 335592. Refer to all ten volumes when evaluating
your design needs.

Order Number: 334569-087US
March 2025

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter
drafted which includes subject matter disclosed herein.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability,
fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of
dealing, or usage in trade.

Code names are used by Intel to identify products, technologies, or services that are in development and not publicly
available. These are not “commercial” names and not intended to function as trademarks.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document, with
the sole exception that a) you may publish an unmodified copy and b) code included in this document is licensed subject to
the Zero-Clause BSD open source license (0BSD), https://opensource.org/licenses/0BSD. You may create software
implementations based on this document and in compliance with the foregoing that are intended to execute on the Intel
product(s) referenced in this document. No rights are granted to create modifications or derivatives of this document.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other
names and brands may be claimed as the property of others.

https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD

Vol. 2D 6-1

CHAPTER 6
INSTRUCTION SET REFERENCE, W-Z

6.1 INSTRUCTIONS (W-Z)
Chapter 6 continues an alphabetical discussion of Intel® 64 and IA-32 instructions (W-Z). See also: Chapter 3,
“Instruction Set Reference, A-L,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A; Chapter 4, “Instruction Set Reference, M-U‚” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2B; and Chapter 5, “Instruction Set Reference, V‚” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2D.

WAIT/FWAIT—Wait Vol. 2D 6-2

WAIT/FWAIT—Wait

Instruction Operand Encoding

Description

Causes the processor to check for and handle pending, unmasked, floating-point exceptions before proceeding.
(FWAIT is an alternate mnemonic for WAIT.)

This instruction is useful for synchronizing exceptions in critical sections of code. Coding a WAIT instruction after a
floating-point instruction ensures that any unmasked floating-point exceptions the instruction may raise are
handled before the processor can modify the instruction’s results. See the section titled “Floating-Point Exception
Synchronization” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for
more information on using the WAIT/FWAIT instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CheckForPendingUnmaskedFloatingPointExceptions;

FPU Flags Affected

The C0, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM If CR0.MP[bit 1] = 1 and CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

9B WAIT ZO Valid Valid Check pending unmasked floating-point
exceptions.

9B FWAIT ZO Valid Valid Check pending unmasked floating-point
exceptions.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

WBINVD—Write Back and Invalidate Cache Vol. 2D 6-3

WBINVD—Write Back and Invalidate Cache

Instruction Operand Encoding

Description

Writes back all modified cache lines in the processor’s internal cache to main memory and invalidates (flushes) the
internal caches. The instruction then issues a special-function bus cycle that directs external caches to also write
back modified data and another bus cycle to indicate that the external caches should be invalidated.

After executing this instruction, the processor does not wait for the external caches to complete their write-back
and flushing operations before proceeding with instruction execution. It is the responsibility of hardware to respond
to the cache write-back and flush signals. The amount of time or cycles for WBINVD to complete will vary due to
size and other factors of different cache hierarchies. As a consequence, the use of the WBINVD instruction can have
an impact on logical processor interrupt/event response time. Additional information of WBINVD behavior in a
cache hierarchy with hierarchical sharing topology can be found in Chapter 2 of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A.

The WBINVD instruction is a privileged instruction. When the processor is running in protected mode, the CPL of a
program or procedure must be 0 to execute this instruction. This instruction is also a serializing instruction (see
“Serializing Instructions” in Chapter 9 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A).

In situations where cache coherency with main memory is not a concern, software can use the INVD instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The WBINVD instruction is implementation dependent, and its function may be implemented differently on future
Intel 64 and IA-32 processors. The instruction is not supported on IA-32 processors earlier than the Intel486
processor.

Operation

WriteBack(InternalCaches);
Flush(InternalCaches);
SignalWriteBack(ExternalCaches);
SignalFlush(ExternalCaches);
Continue; (* Continue execution *)

void _wbinvd(void)Flags Affected

None.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 09 WBINVD ZO Valid Valid Write back and flush Internal caches; initiate
writing-back and flushing of external caches.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

WBINVD—Write Back and Invalidate Cache Vol. 2D 6-4

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) WBINVD cannot be executed at the virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

WBNOINVD—Write Back and Do Not Invalidate Cache Vol. 2D 6-5

WBNOINVD—Write Back and Do Not Invalidate Cache

Instruction Operand Encoding

Description

The WBNOINVD instruction writes back all modified cache lines in the processor’s internal cache to main memory
but does not invalidate (flush) the internal caches.

After executing this instruction, the processor does not wait for the external caches to complete their write-back
operation before proceeding with instruction execution. It is the responsibility of hardware to respond to the cache
write-back signal. The amount of time or cycles for WBNOINVD to complete will vary due to size and other factors
of different cache hierarchies. As a consequence, the use of the WBNOINVD instruction can have an impact on
logical processor interrupt/event response time.

The WBNOINVD instruction is a privileged instruction. When the processor is running in protected mode, the CPL of
a program or procedure must be 0 to execute this instruction. This instruction is also a serializing instruction (see
“Serializing Instructions” in Chapter 9 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

WriteBack(InternalCaches);
Continue; (* Continue execution *)

Intel C/C++ Compiler Intrinsic Equivalent

WBNOINVD void _wbnoinvd(void);

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) WBNOINVD cannot be executed at the virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

Opcode /
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 09

WBNOINVD

ZO V/V WBNOINVD Write back and do not flush internal caches;
initiate writing-back without flushing of external
caches.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A N/A

WBNOINVD—Write Back and Do Not Invalidate Cache Vol. 2D 6-6

64-Bit Mode Exceptions
Same exceptions as in protected mode.

WRFSBASE/WRGSBASE—Write FS/GS Segment Base Vol. 2D 6-7

WRFSBASE/WRGSBASE—Write FS/GS Segment Base

Instruction Operand Encoding

Description

Loads the FS or GS segment base address with the general-purpose register indicated by the modR/M:r/m field.

The source operand may be either a 32-bit or a 64-bit general-purpose register. The REX.W prefix indicates the
operand size is 64 bits. If no REX.W prefix is used, the operand size is 32 bits; the upper 32 bits of the source
register are ignored and upper 32 bits of the base address (for FS or GS) are cleared.
This instruction is supported only in 64-bit mode.

Operation

FS/GS segment base address := SRC;

Flags Affected

None.

C/C++ Compiler Intrinsic Equivalent

WRFSBASE void _writefsbase_u32(unsigned int);
WRFSBASE _writefsbase_u64(unsigned __int64);
WRGSBASE void _writegsbase_u32(unsigned int);
WRGSBASE _writegsbase_u64(unsigned __int64);

Protected Mode Exceptions
#UD The WRFSBASE and WRGSBASE instructions are not recognized in protected mode.

Real-Address Mode Exceptions
#UD The WRFSBASE and WRGSBASE instructions are not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The WRFSBASE and WRGSBASE instructions are not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The WRFSBASE and WRGSBASE instructions are not recognized in compatibility mode.

Opcode/
Instruction

Op/
En

64/32-
bit
Mode

CPUID Fea-
ture Flag

Description

F3 0F AE /2
WRFSBASE r32

M V/I FSGSBASE Load the FS base address with the 32-bit value in the
source register.

F3 REX.W 0F AE /2
WRFSBASE r64

M V/I FSGSBASE Load the FS base address with the 64-bit value in the
source register.

F3 0F AE /3
WRGSBASE r32

M V/I FSGSBASE Load the GS base address with the 32-bit value in the
source register.

F3 REX.W 0F AE /3
WRGSBASE r64

M V/I FSGSBASE Load the GS base address with the 64-bit value in the
source register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) N/A N/A N/A

WRFSBASE/WRGSBASE—Write FS/GS Segment Base Vol. 2D 6-8

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.FSGSBASE[bit 16] = 0.
If CPUID.07H.0H:EBX.FSGSBASE[bit 0] = 0

#GP(0) If the source register contains a non-canonical address.

WRMSR—Write to Model Specific Register Vol. 2D 6-9

WRMSR—Write to Model Specific Register

Instruction Operand Encoding

Description

Writes the contents of registers EDX:EAX into the 64-bit model specific register (MSR) specified in the ECX register.
(On processors that support the Intel 64 architecture, the high-order 32 bits of RCX are ignored.) The contents of
the EDX register are copied to high-order 32 bits of the selected MSR and the contents of the EAX register are
copied to low-order 32 bits of the MSR. (On processors that support the Intel 64 architecture, the high-order 32
bits of each of RAX and RDX are ignored.) Undefined or reserved bits in an MSR should be set to values previously
read.

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a general protection
exception #GP(0) is generated. Specifying a reserved or unimplemented MSR address in ECX will also cause a
general protection exception. The processor will also generate a general protection exception if software attempts
to write to bits in a reserved MSR.

When the WRMSR instruction is used to write to an MTRR, the TLBs are invalidated. This includes global entries
(see Section 5.10.2, “Translation Lookaside Buffers (TLBs)” of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A).

MSRs control functions for testability, execution tracing, performance-monitoring and machine check errors.
Chapter 2, “Model-Specific Registers (MSRs),” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 4, lists all MSRs that can be written with this instruction and their addresses. Note that each
processor family has its own set of MSRs.

The WRMSR instruction is a serializing instruction (see “Serializing Instructions” in Chapter 9 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A). Note that WRMSR to the IA32_TSC_DEADLINE MSR
(MSR index 6E0H) and the X2APIC MSRs (MSR indices 802H to 83FH) are not serializing.

The CPUID instruction should be used to determine whether MSRs are supported (CPUID.01H:EDX[5] = 1) before
using this instruction.

IA-32 Architecture Compatibility

The MSRs and the ability to read them with the WRMSR instruction were introduced into the IA-32 architecture with
the Pentium processor. Execution of this instruction by an IA-32 processor earlier than the Pentium processor
results in an invalid opcode exception #UD.

Operation

MSR[ECX] := EDX:EAX;

Flags Affected

None.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 30 WRMSR ZO Valid Valid Write the value in EDX:EAX to MSR specified
by ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

WRMSR—Write to Model Specific Register Vol. 2D 6-10

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR address.
If the value in EDX:EAX sets bits that are reserved in the MSR specified by ECX.
If the source register contains a non-canonical address and ECX specifies one of the following
MSRs: IA32_DS_AREA, IA32_FS_BASE, IA32_GS_BASE, IA32_KERNEL_GS_BASE, IA32_L-
STAR, IA32_SYSENTER_EIP, IA32_SYSENTER_ESP.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the value in ECX specifies a reserved or unimplemented MSR address.

If the value in EDX:EAX sets bits that are reserved in the MSR specified by ECX.
If the source register contains a non-canonical address and ECX specifies one of the following
MSRs: IA32_DS_AREA, IA32_FS_BASE, IA32_GS_BASE, IA32_KERNEL_GS_BASE, IA32_L-
STAR, IA32_SYSENTER_EIP, IA32_SYSENTER_ESP.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The WRMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

WRMSRLIST—Write List of Model Specific Registers Vol. 2A 3-11

WRMSRLIST—Write List of Model Specific Registers

Instruction Operand Encoding

Description

This instruction writes a software-provided list of up to 64 MSRs with values loaded from memory.

WRMSRLIST takes three implied input operands:
• RSI: Linear address of a table of MSR addresses (8 bytes per address)1.
• RDI: Linear address of a table from which MSR data is loaded (8 bytes per MSR).
• RCX: 64-bit bitmask of valid bits for the MSRs. Bit 0 is the valid bit for entry 0 in each table, etc.

For each RCX bit [n] from 0 to 63, if RCX[n] is 1, WRMSRLIST will write the MSR specified at entry [n] in the RSI-
based table with the value read from memory at the entry [n] in the RDI-based table.

This implies a maximum of 64 MSRs that can be processed by this instruction. The processor will clear RCX[n] after
it finishes handling that MSR. Similar to repeated string operations, WRMSRLIST supports partial completion for
interrupts, exceptions, and traps. In these situations, the RIP register saved will point to the MSRLIST instruction
while the RCX register will have cleared bits corresponding to all completed iterations.

This instruction must be executed at privilege level 0; otherwise, a general protection exception #GP(0) is gener-
ated. This instruction performs MSR-specific checks in the same manner as WRMSR.
Like WRMSRNS (and unlike WRMSR), WRMSRLIST is not defined as a serializing instruction (see “Serializing
Instructions” in Chapter 10 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).
This means that software should not rely on WRMSRLIST to drain all buffered writes to memory before the next
instruction is fetched and executed. For implementation reasons, some processors may serialize when writing
certain MSRs, even though that is not guaranteed.
Like WRMSR and WRMSRNS, WRMSRLIST ensures that all operations before WRMSRLIST do not use any new MSR
value and that all operations after WRMSRLIST do use the new values. An exception to this rule is certain store
related performance-monitor events that only count stores when they are drained to memory. Since WRMSRLIST
is not a serializing instruction, if software uses WRMSRLIST to change the controls for such performance-monitor
events, stores issued before WRMSRLIST may be counted based on the controls established by WRMSRLIST. Soft-
ware can insert the SERIALIZE instruction before the WRMSRLIST if so desired.
Those MSRs that cause a TLB invalidation when they are written via WRMSR (e.g., MTRRs) will also cause the same
TLB invalidation when written by WRMSRLIST.
In places where WRMSR is being used as a proxy for a serializing instruction, a different serializing instruction can
be used (e.g., SERIALIZE).
WRMSRLIST writes MSRs in order, which means the processor will ensure that an MSR in iteration “n” will be
written only after previous iterations (“n-1”). If the older MSR writes had a side effect that affects the behavior of
the next MSR, the processor will ensure that side effect is honored.
The processor is allowed (but not required) to “load ahead” in the list. The following are examples of things the
processor may do:
• Use an old memory type or TLB entry for loads or stores to memory containing the tables despite an MSR

written by a previous iteration changing MTRR or invalidating TLBs.

Opcode /
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID Feature Flag Description

F3 0F 01 C6

WRMSRLIST

ZO V/N.E. MSRLIST Write requested list of MSRs with the values
specified in memory.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

1. Since MSR addresses are only 32-bits wide, bits 63:32 of each MSR address table entry is reserved.

WRMSRLIST—Write List of Model Specific Registers Vol. 2A 3-12

• Cause a page fault for access to a table entry after the nth, despite the processor having written only n MSRs.1

Operation
DO WHILE RCX != 0

MSR_index := position of least significant bit set in RCX;
Load MSR_address_table_entry from 8 bytes at the linear address RSI + (MSR_index * 8);
IF MSR_address_table_entry[63:32] != 0 THEN #GP(0); FI;
MSR_address := MSR_address_table_entry[31:0];
Load MSR_data from 8 bytes at the linear address RDI + (MSR_index * 8);
IF WRMSR of MSR_data to the MSR with address MSR_address would #GP THEN #GP(0); FI;
Load the MSR with address MSR_address with MSR_data;
RCX[MSR_index] := 0;
Allow delivery of any pending interrupts or traps;

OD;

Flags Affected

None.

Protected Mode Exceptions
#UD The WRMSRLIST instruction is not recognized in protected mode.

Real-Address Mode Exceptions
#UD The WRMSRLIST instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The WRMSRLIST instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The WRMSRLIST instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If RSI [2:0] ≠ 0, RDI [2:0] ≠ 0, or bits 63:32 of an MSR-address table entry are not all zero.
If an execution of WRMSR to a specified MSR with a specified value would generate a general-
protection exception (#GP(0)).

#UD If the LOCK prefix is used.
If CPUID.(EAX=07H, ECX=01H):EAX.MSRLIST[bit 27] = 0.

1. For example, the processor may take a page fault due to a linear address for the 10th entry in the MSR address table despite only
having completed the MSR writes up to entry 5.

WRMSRNS—Non-Serializing Write to Model Specific Register Vol. 2D 6-13

WRMSRNS—Non-Serializing Write to Model Specific Register

Instruction Operand Encoding

Description

WRMSRNS is an instruction that behaves like WRMSR except that it is not a serializing instruction by default. It can
be executed only at privilege level 0 or in real-address mode; otherwise, a general protection exception #GP(0) is
generated.
The instruction writes the contents of registers EDX:EAX into the 64-bit model specific register (MSR) specified in
the ECX register. The contents of the EDX register are copied to the high-order 32 bits of the selected MSR and the
contents of the EAX register are copied to the low-order 32 bits of the MSR. The high-order 32 bits of RAX, RCX,
and RDX are ignored.
Unlike WRMSR, WRMSRNS is not defined as a serializing instruction (see “Serializing Instructions” in Chapter 10 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). This means that software should
not rely on it to drain all buffered writes to memory before the next instruction is fetched and executed. For imple-
mentation reasons, some processors may serialize when writing certain MSRs, even though that is not guaranteed.
Like WRMSR, WRMSRNS will ensure that all operations before it do not use the new MSR value and that all opera-
tions after the WRMSRNS do use the new value. An exception to this rule is certain store related performance-
monitor events that only count stores when they are drained to memory. Since WRMSRNS is not a serializing
instruction, if software uses WRMSRNS to change the controls for such performance-monitor events, stores issued
before WRMSRMS may be counted based on the controls established by WRMSRNS. Software can insert the
SERIALIZE instruction before the WRMSRNS if so desired.
Those MSRs that cause a TLB invalidation when they are written via WRMSR (e.g., MTRRs) will also cause the same
TLB invalidation when written by WRMSRNS.
In order to improve performance, software may replace WRMSR with WRMSRNS. In places where WRMSR is being
used as a proxy for a serializing instruction, a different serializing instruction can be used (e.g., SERIALIZE).

Operation
MSR[ECX] := EDX:EAX;

Flags Affected

None.

Opcode/
Instruction

Op/
En

64/32 Bit
Mode
Support

CPUID Feature
Flag

Description

NP 0F 01 C6

WRMSRNS

ZO V/V WRMSRNS Write the value in EDX:EAX to MSR specified by
ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

WRMSRNS—Non-Serializing Write to Model Specific Register Vol. 2D 6-14

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the specified MSR address is reserved or unimplemented MSR.
If the source data sets bits that are reserved in the specified MSR.
If the source data contains a non-canonical address and the specified MSR is one of the
following: IA32_BNDCFGS, IA32_DS_AREA, IA32_FS_BASE, IA32_GS_BASE,
IA32_INTERRUPT_SSP_TABLE_ADDR, IA32_KERNEL_GS_BASE, IA32_LSTAR,
IA32_PL0_SSP, IA32_PL1_SSP, IA32_PL2_SSP, IA32_PL3_SSP, IA32_RTIT_ADDR0_A,
IA32_RTIT_ADDR0_B, IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B, IA32_RTIT_ADDR2_A,
IA32_RTIT_ADDR2_B, IA32_RTIT_ADDR3_A, IA32_RTIT_ADDR3_B, IA32_S_CET,
IA32_SYSENTER_EIP, IA32_SYSENTER_ESP, IA32_UINTR_HANDLER, IA32_UINTR_PD,
IA32_UINTR_STACKADJUST, IA32_U_CET, and IA32_UINTR_TT.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP(0) If the specified MSR address is reserved or unimplemented MSR.

If the source data sets bits that are reserved in the specified MSR.
If the source data contains a non-canonical address and the specified MSR is one of the
following: IA32_BNDCFGS, IA32_DS_AREA, IA32_FS_BASE, IA32_GS_BASE,
IA32_INTERRUPT_SSP_TABLE_ADDR, IA32_KERNEL_GS_BASE, IA32_LSTAR,
IA32_PL0_SSP, IA32_PL1_SSP, IA32_PL2_SSP, IA32_PL3_SSP, IA32_RTIT_ADDR0_A,
IA32_RTIT_ADDR0_B, IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B, IA32_RTIT_ADDR2_A,
IA32_RTIT_ADDR2_B, IA32_RTIT_ADDR3_A, IA32_RTIT_ADDR3_B, IA32_S_CET,
IA32_SYSENTER_EIP, IA32_SYSENTER_ESP, IA32_UINTR_HANDLER, IA32_UINTR_PD,
IA32_UINTR_STACKADJUST, IA32_U_CET, and IA32_UINTR_TT.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The WRMSRNS instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the specified MSR address is reserved or unimplemented MSR.
If the source data sets bits that are reserved in the specified MSR.
If the source data contains a non-canonical address and the specified MSR is one of the
following: IA32_BNDCFGS, IA32_DS_AREA, IA32_FS_BASE, IA32_GS_BASE,
IA32_INTERRUPT_SSP_TABLE_ADDR, IA32_KERNEL_GS_BASE, IA32_LSTAR,
IA32_PL0_SSP, IA32_PL1_SSP, IA32_PL2_SSP, IA32_PL3_SSP, IA32_RTIT_ADDR0_A,
IA32_RTIT_ADDR0_B, IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B, IA32_RTIT_ADDR2_A,
IA32_RTIT_ADDR2_B, IA32_RTIT_ADDR3_A, IA32_RTIT_ADDR3_B, IA32_S_CET,
IA32_SYSENTER_EIP, IA32_SYSENTER_ESP, IA32_UINTR_HANDLER, IA32_UINTR_PD,
IA32_UINTR_STACKADJUST, IA32_U_CET, and IA32_UINTR_TT.

#UD If the LOCK prefix is used.

WRPKRU—Write Data to User Page Key Register Vol. 2D 6-15

WRPKRU—Write Data to User Page Key Register

Instruction Operand Encoding

Description

Writes the value of EAX into PKRU. ECX and EDX must be 0 when WRPKRU is executed; otherwise, a general-
protection exception (#GP) occurs.

WRPKRU can be executed only if CR4.PKE = 1; otherwise, an invalid-opcode exception (#UD) occurs. Software can
discover the value of CR4.PKE by examining CPUID.(EAX=07H,ECX=0H):ECX.OSPKE [bit 4].

On processors that support the Intel 64 Architecture, the high-order 32-bits of RCX, RDX, and RAX are ignored.

WRPKRU will never execute speculatively. Memory accesses affected by PKRU register will not execute (even
speculatively) until all prior executions of WRPKRU have completed execution and updated the PKRU register.

Operation

IF (ECX = 0 AND EDX = 0)
THEN PKRU := EAX;
ELSE #GP(0);

FI;

Flags Affected

None.

C/C++ Compiler Intrinsic Equivalent

WRPKRU void _wrpkru(uint32_t);

Protected Mode Exceptions
#GP(0) If ECX ≠ 0.

If EDX ≠ 0.
#UD If the LOCK prefix is used.

If CR4.PKE = 0.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

Opcode/
Instruction

Op/
En

64/32bit
Mode
Support

CPUID
Feature
Flag

Description

NP 0F 01 EF

WRPKRU

ZO V/V OSPKE Writes EAX into PKRU.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

WRPKRU—Write Data to User Page Key Register Vol. 2D 6-16

64-Bit Mode Exceptions
Same exceptions as in protected mode.

WRSSD/WRSSQ—Write to Shadow Stack Vol. 2D 6-17

WRSSD/WRSSQ—Write to Shadow Stack

Instruction Operand Encoding

Description

Writes bytes in register source to the shadow stack.

Operation

IF CPL = 3
IF (CR4.CET & IA32_U_CET.SH_STK_EN) = 0

THEN #UD; FI;
IF (IA32_U_CET.WR_SHSTK_EN) = 0

THEN #UD; FI;
ELSE

IF (CR4.CET & IA32_S_CET.SH_STK_EN) = 0
THEN #UD; FI;

IF (IA32_S_CET.WR_SHSTK_EN) = 0
THEN #UD; FI;

FI;
DEST_LA = Linear_Address(mem operand)
IF (operand size is 64 bit)

THEN
(* Destination not 8B aligned *)
IF DEST_LA[2:0]

THEN GP(0); FI;
Shadow_stack_store 8 bytes of SRC to DEST_LA;

ELSE
(* Destination not 4B aligned *)
IF DEST_LA[1:0]

THEN GP(0); FI;
Shadow_stack_store 4 bytes of SRC[31:0] to DEST_LA;

FI;

Flags Affected

None.

C/C++ Compiler Intrinsic Equivalent

WRSSD void _wrssd(__int32, void *);
WRSSQ void _wrssq(__int64, void *);

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature Flag

Description

0F 38 F6 !(11):rrr:bbb
WRSSD m32, r32

MR V/V CET_SS Write 4 bytes to shadow stack.

REX.W 0F 38 F6 !(11):rrr:bbb
WRSSQ m64, r64

MR V/N.E. CET_SS Write 8 bytes to shadow stack.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) N/A N/A

WRSSD/WRSSQ—Write to Shadow Stack Vol. 2D 6-18

Protected Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.CET = 0.
If CPL = 3 and IA32_U_CET.SH_STK_EN = 0.
If CPL < 3 and IA32_S_CET.SH_STK_EN = 0.
If CPL = 3 and IA32_U_CET.WR_SHSTK_EN = 0.
If CPL < 3 and IA32_S_CET.WR_SHSTK_EN = 0.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If destination is located in a non-writeable segment.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.
If linear address of destination is not 4 byte aligned.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs if destination is not a user shadow stack when CPL3 and not a supervisor

shadow stack when CPL < 3.
Other terminal and non-terminal faults.

Real-Address Mode Exceptions
#UD The WRSS instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The WRSS instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.CET = 0.
If CPL = 3 and IA32_U_CET.SH_STK_EN = 0.
If CPL < 3 and IA32_S_CET.SH_STK_EN = 0.
If CPL = 3 and IA32_U_CET.WR_SHSTK_EN = 0.
If CPL < 3 and IA32_S_CET.WR_SHSTK_EN = 0.

#PF(fault-code) If a page fault occurs if destination is not a user shadow stack when CPL3 and not a supervisor
shadow stack when CPL < 3.
Other terminal and non-terminal faults.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.CET = 0.
If CPL = 3 and IA32_U_CET.SH_STK_EN = 0.
If CPL < 3 and IA32_S_CET.SH_STK_EN = 0.
If CPL = 3 and IA32_U_CET.WR_SHSTK_EN = 0.
If CPL < 3 and IA32_S_CET.WR_SHSTK_EN = 0.

#GP(0) If a memory address is in a non-canonical form.
If linear address of destination is not 4 byte aligned.

#PF(fault-code) If a page fault occurs if destination is not a user shadow stack when CPL3 and not a supervisor
shadow stack when CPL < 3.
Other terminal and non-terminal faults.

WRUSSD/WRUSSQ—Write to User Shadow Stack Vol. 2D 6-19

WRUSSD/WRUSSQ—Write to User Shadow Stack

Instruction Operand Encoding

Description

Writes bytes in register source to a user shadow stack pag.

Operation

IF CR4.CET = 0
THEN #UD; FI;

IF CPL > 0
THEN #GP(0); FI;

DEST_LA = Linear_Address(mem operand)
IF (operand size is 64 bit)

THEN
(* Destination not 8B aligned *)
IF DEST_LA[2:0]

THEN GP(0); FI;
Shadow_stack_store 8 bytes of SRC to DEST_LA as user-mode access;

ELSE
(* Destination not 4B aligned *)
IF DEST_LA[1:0]

THEN GP(0); FI;
Shadow_stack_store 4 bytes of SRC[31:0] to DEST_LA as user-mode access;

FI;

Flags Affected

None.

C/C++ Compiler Intrinsic Equivalent

WRUSSD void _wrussd(__int32, void *);
WRUSSQ void _wrussq(__int64, void *);

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature Flag

Description

66 0F 38 F5 !(11):rrr:bbb
WRUSSD m32, r32

MR V/V CET_SS Write 4 bytes to shadow stack.

66 REX.W 0F 38 F5 !(11):rrr:bbb
WRUSSQ m64, r64

MR V/N.E. CET_SS Write 8 bytes to shadow stack.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) N/A N/A

WRUSSD/WRUSSQ—Write to User Shadow Stack Vol. 2D 6-20

Protected Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.CET = 0.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If destination is located in a non-writeable segment.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.
If linear address of destination is not 4 byte aligned.
If CPL is not 0.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If destination is not a user shadow stack.

Other terminal and non-terminal faults.

Real-Address Mode Exceptions
#UD The WRUSS instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The WRUSS instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.CET = 0.
#GP(0) If a memory address is in a non-canonical form.

If linear address of destination is not 4 byte aligned.
If CPL is not 0.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If destination is not a user shadow stack.

Other terminal and non-terminal faults.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.CET = 0.
#GP(0) If a memory address is in a non-canonical form.

If linear address of destination is not 4 byte aligned.
If CPL is not 0.

#PF(fault-code) If destination is not a user shadow stack.
Other terminal and non-terminal faults.

XABORT—Transactional Abort Vol. 2D 6-21

XABORT—Transactional Abort

Instruction Operand Encoding

Description

XABORT forces an RTM abort. Following an RTM abort, the logical processor resumes execution at the fallback
address computed through the outermost XBEGIN instruction. The EAX register is updated to reflect an XABORT
instruction caused the abort, and the imm8 argument will be provided in bits 31:24 of EAX.

Operation

XABORT
IF RTM_ACTIVE = 0

THEN
Treat as NOP;

ELSE
GOTO RTM_ABORT_PROCESSING;

FI;

(* For any RTM abort condition encountered during RTM execution *)
RTM_ABORT_PROCESSING:

Restore architectural register state;
Discard memory updates performed in transaction;
Update EAX with status and XABORT argument;
RTM_NEST_COUNT:= 0;
RTM_ACTIVE:= 0;
SUSLDTRK_ACTIVE := 0;
IF 64-bit Mode

THEN
RIP:= fallbackRIP;

ELSE
EIP := fallbackEIP;

FI;
END

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent

XABORT void _xabort(unsigned int);

SIMD Floating-Point Exceptions

None.

Opcode/Instruction Op/
En

64/32bit
Mode
Support

CPUID
Feature
Flag

Description

C6 F8 ib
XABORT imm8

A V/V RTM Causes an RTM abort if in RTM execution.

Op/En Operand 1 Operand2 Operand3 Operand4

A imm8 N/A N/A N/A

XABORT—Transactional Abort Vol. 2D 6-22

Other Exceptions
#UD CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11] = 0.

If LOCK prefix is used.

XACQUIRE/XRELEASE—Hardware Lock Elision Prefix Hints Vol. 2D 6-23

XACQUIRE/XRELEASE—Hardware Lock Elision Prefix Hints

Description

The XACQUIRE prefix is a hint to start lock elision on the memory address specified by the instruction and the
XRELEASE prefix is a hint to end lock elision on the memory address specified by the instruction.
The XACQUIRE prefix hint can only be used with the following instructions (these instructions are also referred to
as XACQUIRE-enabled when used with the XACQUIRE prefix):
• Instructions with an explicit LOCK prefix (F0H) prepended to forms of the instruction where the destination

operand is a memory operand: ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCHG8B, DEC, INC, NEG, NOT,
OR, SBB, SUB, XOR, XADD, and XCHG.

• The XCHG instruction either with or without the presence of the LOCK prefix.
The XRELEASE prefix hint can only be used with the following instructions (also referred to as XRELEASE-enabled
when used with the XRELEASE prefix):
• Instructions with an explicit LOCK prefix (F0H) prepended to forms of the instruction where the destination

operand is a memory operand: ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCHG8B, DEC, INC, NEG, NOT,
OR, SBB, SUB, XOR, XADD, and XCHG.

• The XCHG instruction either with or without the presence of the LOCK prefix.
• The “MOV mem, reg” (Opcode 88H/89H) and “MOV mem, imm” (Opcode C6H/C7H) instructions. In these

cases, the XRELEASE is recognized without the presence of the LOCK prefix.
The lock variables must satisfy the guidelines described in Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, Section 16.3.3, for elision to be successful, otherwise an HLE abort may be signaled.
If an encoded byte sequence that meets XACQUIRE/XRELEASE requirements includes both prefixes, then the HLE
semantic is determined by the prefix byte that is placed closest to the instruction opcode. For example, an F3F2C6
will not be treated as a XRELEASE-enabled instruction since the F2H (XACQUIRE) is closest to the instruction
opcode C6. Similarly, an F2F3F0 prefixed instruction will be treated as a XRELEASE-enabled instruction since F3H
(XRELEASE) is closest to the instruction opcode.

Opcode/Instruction 64/32bit
Mode
Support

CPUID
Feature
Flag

Description

F2
XACQUIRE

V/V HLE1

NOTES:
1. Software is not required to check the HLE feature flag to use XACQUIRE or XRELEASE, as they are treated as regular prefix if HLE

feature flag reports 0.

A hint used with an “XACQUIRE-enabled“ instruction to start lock
elision on the instruction memory operand address.

F3
XRELEASE

V/V HLE A hint used with an “XRELEASE-enabled“ instruction to end lock
elision on the instruction memory operand address.

XACQUIRE/XRELEASE—Hardware Lock Elision Prefix Hints Vol. 2D 6-24

Intel 64 and IA-32 Compatibility
The effect of the XACQUIRE/XRELEASE prefix hint is the same in non-64-bit modes and in 64-bit mode.
For instructions that do not support the XACQUIRE hint, the presence of the F2H prefix behaves the same way as
prior hardware, according to
• REPNE/REPNZ semantics for string instructions,
• Serve as SIMD prefix for legacy SIMD instructions operating on XMM register
• Cause #UD if prepending the VEX prefix.
• Undefined for non-string instructions or other situations.
For instructions that do not support the XRELEASE hint, the presence of the F3H prefix behaves the same way as
in prior hardware, according to
• REP/REPE/REPZ semantics for string instructions,
• Serve as SIMD prefix for legacy SIMD instructions operating on XMM register
• Cause #UD if prepending the VEX prefix.
• Undefined for non-string instructions or other situations.

Operation

XACQUIRE
IF XACQUIRE-enabled instruction

THEN
IF (HLE_NEST_COUNT < MAX_HLE_NEST_COUNT) THEN

HLE_NEST_COUNT++
IF (HLE_NEST_COUNT = 1) THEN

HLE_ACTIVE := 1
IF 64-bit mode

THEN
restartRIP := instruction pointer of the XACQUIRE-enabled instruction

ELSE
restartEIP := instruction pointer of the XACQUIRE-enabled instruction

FI;
Enter HLE Execution (* record register state, start tracking memory state *)

FI; (* HLE_NEST_COUNT = 1*)
IF ElisionBufferAvailable

THEN
Allocate elision buffer
Record address and data for forwarding and commit checking
Perform elision

ELSE
Perform lock acquire operation transactionally but without elision

FI;
ELSE (* HLE_NEST_COUNT = MAX_HLE_NEST_COUNT*)

GOTO HLE_ABORT_PROCESSING
FI;

ELSE
Treat instruction as non-XACQUIRE F2H prefixed legacy instruction

FI;

XACQUIRE/XRELEASE—Hardware Lock Elision Prefix Hints Vol. 2D 6-25

XRELEASE
IF XRELEASE-enabled instruction

THEN
IF (HLE_NEST_COUNT > 0)

THEN
HLE_NEST_COUNT--
IF lock address matches in elision buffer THEN

IF lock satisfies address and value requirements THEN
Deallocate elision buffer

ELSE
GOTO HLE_ABORT_PROCESSING

FI;
FI;
IF (HLE_NEST_COUNT = 0)

THEN
IF NoAllocatedElisionBuffer

THEN
Try to commit transactional execution
IF fail to commit transactional execution

THEN
GOTO HLE_ABORT_PROCESSING;

ELSE (* commit success *)
HLE_ACTIVE := 0

FI;
ELSE

GOTO HLE_ABORT_PROCESSING
FI;

FI;
FI; (* HLE_NEST_COUNT > 0 *)

ELSE
Treat instruction as non-XRELEASE F3H prefixed legacy instruction

FI;

(* For any HLE abort condition encountered during HLE execution *)
HLE_ABORT_PROCESSING:
 HLE_ACTIVE := 0

HLE_NEST_COUNT := 0
Restore architectural register state
Discard memory updates performed in transaction
Free any allocated lock elision buffers
IF 64-bit mode

THEN
RIP := restartRIP

ELSE
EIP := restartEIP

FI;
Execute and retire instruction at RIP (or EIP) and ignore any HLE hint

END

XACQUIRE/XRELEASE—Hardware Lock Elision Prefix Hints Vol. 2D 6-26

SIMD Floating-Point Exceptions

None.

Other Exceptions
#GP(0) If the use of prefix causes instruction length to exceed 15 bytes.

XADD—Exchange and Add Vol. 2D 6-27

XADD—Exchange and Add

Instruction Operand Encoding

Description

Exchanges the first operand (destination operand) with the second operand (source operand), then loads the sum
of the two values into the destination operand. The destination operand can be a register or a memory location; the
source operand is a register.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See
the summary chart at the beginning of this section for encoding data and limits.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

IA-32 Architecture Compatibility

IA-32 processors earlier than the Intel486 processor do not recognize this instruction. If this instruction is used,
you should provide an equivalent code sequence that runs on earlier processors.

Operation

TEMP := SRC + DEST;
SRC := DEST;
DEST := TEMP;

Flags Affected

The CF, PF, AF, SF, ZF, and OF flags are set according to the result of the addition, which is stored in the destination
operand.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F C0 /r XADD r/m81, r81

NOTES:
1. With a REX prefix in 64-bit mode, attempts to access AH, BH, CH, or DH will instead access SPL, DIL, BPL, or SIL, respectively.

MR Valid Valid Exchange r8 and r/m8; load sum into r/m8.

0F C1 /r XADD r/m16, r16 MR Valid Valid Exchange r16 and r/m16; load sum into r/m16.

0F C1 /r XADD r/m32, r32 MR Valid Valid Exchange r32 and r/m32; load sum into r/m32.

REX.W + 0F C1 /r XADD r/m64, r64 MR Valid N.E. Exchange r64 and r/m64; load sum into r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (r, w) N/A N/A

XADD—Exchange and Add Vol. 2D 6-28

#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

XBEGIN—Transactional Begin Vol. 2D 6-29

XBEGIN—Transactional Begin

Instruction Operand Encoding

Description

The XBEGIN instruction specifies the start of an RTM code region. If the logical processor was not already in trans-
actional execution, then the XBEGIN instruction causes the logical processor to transition into transactional execu-
tion. The XBEGIN instruction that transitions the logical processor into transactional execution is referred to as the
outermost XBEGIN instruction. The instruction also specifies a relative offset to compute the address of the fallback
code path following a transactional abort. (Use of the 16-bit operand size does not cause this address to be trun-
cated to 16 bits, unlike a near jump to a relative offset.)
On an RTM abort, the logical processor discards all architectural register and memory updates performed during
the RTM execution and restores architectural state to that corresponding to the outermost XBEGIN instruction. The
fallback address following an abort is computed from the outermost XBEGIN instruction.

Execution of XBEGIN while in a suspend read address tracking region causes a transactional abort.

Operation

XBEGIN
IF RTM_NEST_COUNT < MAX_RTM_NEST_COUNT AND SUSLDTRK_ACTIVE = 0

THEN
RTM_NEST_COUNT++
IF RTM_NEST_COUNT = 1 THEN

IF 64-bit Mode
THEN

IF OperandSize = 16
THEN fallbackRIP := RIP + SignExtend64(rel16);
ELSE fallbackRIP := RIP + SignExtend64(rel32);

FI;
IF fallbackRIP is not canonical

THEN #GP(0);
FI;

ELSE
IF OperandSize = 16

THEN fallbackEIP := EIP + SignExtend32(rel16);
ELSE fallbackEIP := EIP + rel32;

FI;
IF fallbackEIP outside code segment limit

THEN #GP(0);
FI;

FI;

Opcode/Instruction Op/
En

64/32bit
Mode
Support

CPUID
Feature
Flag

Description

C7 F8
XBEGIN rel16

A V/V RTM Specifies the start of an RTM region. Provides a 16-bit relative offset
to compute the address of the fallback instruction address at which
execution resumes following an RTM abort.

C7 F8
XBEGIN rel32

A V/V RTM Specifies the start of an RTM region. Provides a 32-bit relative offset
to compute the address of the fallback instruction address at which
execution resumes following an RTM abort.

Op/En Operand 1 Operand2 Operand3 Operand4

A Offset N/A N/A N/A

XBEGIN—Transactional Begin Vol. 2D 6-30

RTM_ACTIVE := 1
Enter RTM Execution (* record register state, start tracking memory state*)

FI; (* RTM_NEST_COUNT = 1 *)
ELSE (* RTM_NEST_COUNT = MAX_RTM_NEST_COUNT OR SUSLDTRK_ACTIVE = 1 *)

GOTO RTM_ABORT_PROCESSING
FI;

(* For any RTM abort condition encountered during RTM execution *)
RTM_ABORT_PROCESSING:

Restore architectural register state
Discard memory updates performed in transaction
Update EAX with status
RTM_NEST_COUNT := 0
RTM_ACTIVE := 0
SUSLDTRK_ACTIVE := 0
IF 64-bit mode

THEN
RIP := fallbackRIP

ELSE
EIP := fallbackEIP

FI;
END

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent

XBEGIN unsigned int _xbegin(void);

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#UD CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11]=0.

If LOCK prefix is used.
#GP(0) If the fallback address is outside the CS segment.

Real-Address Mode Exceptions
#GP(0) If the fallback address is outside the address space 0000H and FFFFH.
#UD CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11]=0.

If LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the fallback address is outside the address space 0000H and FFFFH.
#UD CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11]=0.

If LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

XBEGIN—Transactional Begin Vol. 2D 6-31

64-bit Mode Exceptions
#UD CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11] = 0.

If LOCK prefix is used.
#GP(0) If the fallback address is non-canonical.

XCHG—Exchange Register/Memory With Register Vol. 2D 6-32

XCHG—Exchange Register/Memory With Register

Instruction Operand Encoding

Description

Exchanges the contents of the destination (first) and source (second) operands. The operands can be two general-
purpose registers or a register and a memory location. If a memory operand is referenced, the processor’s locking
protocol is automatically implemented for the duration of the exchange operation, regardless of the presence or
absence of the LOCK prefix or of the value of the IOPL. (See the LOCK prefix description in this chapter for more
information on the locking protocol.)

This instruction is useful for implementing semaphores or similar data structures for process synchronization. (See
“Bus Locking” in Chapter 9 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for
more information on bus locking.)

The XCHG instruction can also be used instead of the BSWAP instruction for 16-bit operands.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See
the summary chart at the beginning of this section for encoding data and limits.

NOTE
XCHG (E)AX, (E)AX (encoded instruction byte is 90H) is an alias for NOP regardless of data size
prefixes, including REX.W.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

90+rw XCHG AX, r16 O Valid Valid Exchange r16 with AX.

90+rw XCHG r16, AX O Valid Valid Exchange AX with r16.

90+rd XCHG EAX, r32 O Valid Valid Exchange r32 with EAX.

REX.W + 90+rd XCHG RAX, r64 O Valid N.E. Exchange r64 with RAX.

90+rd XCHG r32, EAX O Valid Valid Exchange EAX with r32.

REX.W + 90+rd XCHG r64, RAX O Valid N.E. Exchange RAX with r64.

86 /r XCHG r/m81, r81

NOTES:
1. With a REX prefix in 64-bit mode, attempts to access AH, BH, CH, or DH will instead access SPL, DIL, BPL, or SIL, respectively.

MR Valid Valid Exchange r8 (byte register) with byte from
r/m8.

86 /r XCHG r81, r/m81 RM Valid Valid Exchange byte from r/m8 with r8 (byte
register).

87 /r XCHG r/m16, r16 MR Valid Valid Exchange r16 with word from r/m16.

87 /r XCHG r16, r/m16 RM Valid Valid Exchange word from r/m16 with r16.

87 /r XCHG r/m32, r32 MR Valid Valid Exchange r32 with doubleword from r/m32.

REX.W + 87 /r XCHG r/m64, r64 MR Valid N.E. Exchange r64 with quadword from r/m64.

87 /r XCHG r32, r/m32 RM Valid Valid Exchange doubleword from r/m32 with r32.

REX.W + 87 /r XCHG r64, r/m64 RM Valid N.E. Exchange quadword from r/m64 with r64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

O AX/EAX/RAX (r, w) opcode + rd (r, w) N/A N/A

O opcode + rd (r, w) AX/EAX/RAX (r, w) N/A N/A

MR ModRM:r/m (r, w) ModRM:reg (r) N/A N/A

RM ModRM:reg (w) ModRM:r/m (r) N/A N/A

XCHG—Exchange Register/Memory With Register Vol. 2D 6-33

Operation

TEMP := DEST;
DEST := SRC;
SRC := TEMP;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If either operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

XEND—Transactional End Vol. 2D 6-34

XEND—Transactional End

Instruction Operand Encoding

Description

The instruction marks the end of an RTM code region. If this corresponds to the outermost scope (that is, including
this XEND instruction, the number of XBEGIN instructions is the same as number of XEND instructions), the logical
processor will attempt to commit the logical processor state atomically. If the commit fails, the logical processor
will rollback all architectural register and memory updates performed during the RTM execution. The logical
processor will resume execution at the fallback address computed from the outermost XBEGIN instruction. The EAX
register is updated to reflect RTM abort information.

Execution of XEND outside a transactional region causes a general-protection exception (#GP). Execution of XEND
while in a suspend read address tracking region causes a transactional abort.

Operation

XEND
IF (RTM_ACTIVE = 0) THEN

SIGNAL #GP
ELSE

IF SUSLDTRK_ACTIVE = 1
THEN GOTO RTM_ABORT_PROCESSING;

FI;
RTM_NEST_COUNT--
IF (RTM_NEST_COUNT = 0) THEN

Try to commit transaction
IF fail to commit transactional execution

THEN
GOTO RTM_ABORT_PROCESSING;

ELSE (* commit success *)
RTM_ACTIVE := 0

FI;
FI;

FI;

(* For any RTM abort condition encountered during RTM execution *)
RTM_ABORT_PROCESSING:

Restore architectural register state
Discard memory updates performed in transaction
Update EAX with status
RTM_NEST_COUNT := 0
RTM_ACTIVE := 0
SUSLDTRK_ACTIVE := 0
IF 64-bit Mode

THEN

Opcode/Instruction Op/
En

64/32bit
Mode
Support

CPUID
Feature
Flag

Description

NP 0F 01 D5
XEND

A V/V RTM Specifies the end of an RTM code region.

Op/En Operand 1 Operand2 Operand3 Operand4

A N/A N/A N/A N/A

XEND—Transactional End Vol. 2D 6-35

RIP := fallbackRIP
ELSE

EIP := fallbackEIP
FI;

END

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent

XEND void _xend(void);

SIMD Floating-Point Exceptions

None.

Other Exceptions
#UD CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11] = 0.

If LOCK prefix is used.
#GP(0) If RTM_ACTIVE = 0.

XGETBV—Get Value of Extended Control Register Vol. 2D 6-36

XGETBV—Get Value of Extended Control Register

Instruction Operand Encoding

Description

Reads the contents of the extended control register (XCR) specified in the ECX register into registers EDX:EAX. (On
processors that support the Intel 64 architecture, the high-order 32 bits of RCX are ignored.) The EDX register is
loaded with the high-order 32 bits of the XCR and the EAX register is loaded with the low-order 32 bits. (On proces-
sors that support the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are cleared.) If fewer
than 64 bits are implemented in the XCR being read, the values returned to EDX:EAX in unimplemented bit loca-
tions are undefined.

XCR0 is supported on any processor that supports the XGETBV instruction. If
CPUID.(EAX=0DH,ECX=1):EAX.XG1[bit 2] = 1, executing XGETBV with ECX = 1 returns in EDX:EAX the logical-
AND of XCR0 and the current value of the XINUSE state-component bitmap. This allows software to discover the
state of the init optimization used by XSAVEOPT and XSAVES. See Chapter 13, “Managing State Using the XSAVE
Feature Set‚” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

Use of any other value for ECX results in a general-protection (#GP) exception.

Operation

EDX:EAX := XCR[ECX];

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XGETBV unsigned __int64 _xgetbv(unsigned int);

Protected Mode Exceptions
#GP(0) If an invalid XCR is specified in ECX (includes ECX = 1 if

CPUID.(EAX=0DH,ECX=1):EAX.XG1[bit 2] = 0).
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP(0) If an invalid XCR is specified in ECX (includes ECX = 1 if

CPUID.(EAX=0DH,ECX=1):EAX.XG1[bit 2] = 0).
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

NP 0F 01 D0 XGETBV ZO Valid Valid Reads an XCR specified by ECX into EDX:EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

XGETBV—Get Value of Extended Control Register Vol. 2D 6-37

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

XLAT/XLATB—Table Look-up Translation Vol. 2D 6-38

XLAT/XLATB—Table Look-up Translation

Instruction Operand Encoding

Description

Locates a byte entry in a table in memory, using the contents of the AL register as a table index, then copies the
contents of the table entry back into the AL register. The index in the AL register is treated as an unsigned integer.
The XLAT and XLATB instructions get the base address of the table in memory from either the DS:EBX or the DS:BX
registers (depending on the address-size attribute of the instruction, 32 or 16, respectively). (The DS segment
may be overridden with a segment override prefix.)

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operand” form and the “no-
operand” form. The explicit-operand form (specified with the XLAT mnemonic) allows the base address of the table
to be specified explicitly with a symbol. This explicit-operands form is provided to allow documentation; however,
note that the documentation provided by this form can be misleading. That is, the symbol does not have to specify
the correct base address. The base address is always specified by the DS:(E)BX registers, which must be loaded
correctly before the XLAT instruction is executed.

The no-operands form (XLATB) provides a “short form” of the XLAT instructions. Here also the processor assumes
that the DS:(E)BX registers contain the base address of the table.

In 64-bit mode, operation is similar to that in legacy or compatibility mode. AL is used to specify the table index
(the operand size is fixed at 8 bits). RBX, however, is used to specify the table’s base address. See the summary
chart at the beginning of this section for encoding data and limits.

Operation

IF AddressSize = 16
THEN

AL := (DS:BX + ZeroExtend(AL));
ELSE IF (AddressSize = 32)

AL := (DS:EBX + ZeroExtend(AL)); FI;
ELSE (AddressSize = 64)

AL := (RBX + ZeroExtend(AL));
FI;

Flags Affected

None.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

D7 XLAT m8 ZO Valid Valid Set AL to memory byte DS:[(E)BX + unsigned
AL].

D7 XLATB ZO Valid Valid Set AL to memory byte DS:[(E)BX + unsigned
AL].

REX.W + D7 XLATB ZO Valid N.E. Set AL to memory byte [RBX + unsigned AL].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

XLAT/XLATB—Table Look-up Translation Vol. 2D 6-39

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

XOR—Logical Exclusive OR Vol. 2D 6-40

XOR—Logical Exclusive OR

Instruction Operand Encoding

Description

Performs a bitwise exclusive OR (XOR) operation on the destination (first) and source (second) operands and
stores the result in the destination operand location. The source operand can be an immediate, a register, or a
memory location; the destination operand can be a register or a memory location. (However, two memory oper-
ands cannot be used in one instruction.) Each bit of the result is 1 if the corresponding bits of the operands are
different; each bit is 0 if the corresponding bits are the same.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). Using a
REX prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

34 ib XOR AL, imm8 I Valid Valid AL XOR imm8.

35 iw XOR AX, imm16 I Valid Valid AX XOR imm16.

35 id XOR EAX, imm32 I Valid Valid EAX XOR imm32.

REX.W + 35 id XOR RAX, imm32 I Valid N.E. RAX XOR imm32 (sign-extended).

80 /6 ib XOR r/m81, imm8

NOTES:
1. With a REX prefix in 64-bit mode, attempts to access AH, BH, CH, or DH will instead access SPL, DIL, BPL, or SIL, respectively.

MI Valid Valid r/m8 XOR imm8.

81 /6 iw XOR r/m16, imm16 MI Valid Valid r/m16 XOR imm16.

81 /6 id XOR r/m32, imm32 MI Valid Valid r/m32 XOR imm32.

REX.W + 81 /6 id XOR r/m64, imm32 MI Valid N.E. r/m64 XOR imm32 (sign-extended).

83 /6 ib XOR r/m16, imm8 MI Valid Valid r/m16 XOR imm8 (sign-extended).

83 /6 ib XOR r/m32, imm8 MI Valid Valid r/m32 XOR imm8 (sign-extended).

REX.W + 83 /6 ib XOR r/m64, imm8 MI Valid N.E. r/m64 XOR imm8 (sign-extended).

30 /r XOR r/m81, r81 MR Valid Valid r/m8 XOR r8.

31 /r XOR r/m16, r16 MR Valid Valid r/m16 XOR r16.

31 /r XOR r/m32, r32 MR Valid Valid r/m32 XOR r32.

REX.W + 31 /r XOR r/m64, r64 MR Valid N.E. r/m64 XOR r64.

32 /r XOR r8,1 r/m81 RM Valid Valid r8 XOR r/m8.

33 /r XOR r16, r/m16 RM Valid Valid r16 XOR r/m16.

33 /r XOR r32, r/m32 RM Valid Valid r32 XOR r/m32.

REX.W + 33 /r XOR r64, r/m64 RM Valid N.E. r64 XOR r/m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/16/32 N/A N/A

MI ModRM:r/m (r, w) imm8/16/32 N/A N/A

MR ModRM:r/m (r, w) ModRM:reg (r) N/A N/A

RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

XOR—Logical Exclusive OR Vol. 2D 6-41

Operation

DEST := DEST XOR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The state of the AF flag is
undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

XORPD—Bitwise Logical XOR of Packed Double Precision Floating-Point Values Vol. 2D 6-42

XORPD—Bitwise Logical XOR of Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a bitwise logical XOR of the two, four or eight packed double precision floating-point values from the first
source operand and the second source operand, and stores the result in the destination operand.
EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand can be a ZMM
register or a vector memory location. The destination operand is a ZMM register conditionally updated with write-
mask k1.
VEX.256 and EVEX.256 encoded versions: The first source operand is a YMM register. The second source operand
is a YMM register or a 256-bit memory location. The destination operand is a YMM register (conditionally updated
with writemask k1 in case of EVEX). The upper bits (MAXVL-1:256) of the corresponding ZMM register destination
are zeroed.
VEX.128 and EVEX.128 encoded versions: The first source operand is an XMM register. The second source operand
is an XMM register or 128-bit memory location. The destination operand is an XMM register (conditionally updated
with writemask k1 in case of EVEX). The upper bits (MAXVL-1:128) of the corresponding ZMM register destination
are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding
register destination are unmodified.

Opcode/
Instruction

Op /
En

64/32 bit
Mode
Support

CPUID Feature
Flag

Description

66 0F 57/r
XORPD xmm1, xmm2/m128

A V/V SSE2 Return the bitwise logical XOR of packed double
precision floating-point values in xmm1 and
xmm2/mem.

VEX.128.66.0F.WIG 57 /r
VXORPD xmm1,xmm2, xmm3/m128

B V/V AVX Return the bitwise logical XOR of packed double
precision floating-point values in xmm2 and
xmm3/mem.

VEX.256.66.0F.WIG 57 /r
VXORPD ymm1, ymm2, ymm3/m256

B V/V AVX Return the bitwise logical XOR of packed double
precision floating-point values in ymm2 and
ymm3/mem.

EVEX.128.66.0F.W1 57 /r
VXORPD xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst

C V/V (AVX512VL AND
AVX512DQ) OR
AVX10.1

Return the bitwise logical XOR of packed double
precision floating-point values in xmm2 and
xmm3/m128/m64bcst subject to writemask k1.

EVEX.256.66.0F.W1 57 /r
VXORPD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst

C V/V (AVX512VL AND
AVX512DQ) OR
AVX10.1

Return the bitwise logical XOR of packed double
precision floating-point values in ymm2 and
ymm3/m256/m64bcst subject to writemask k1.

EVEX.512.66.0F.W1 57 /r
VXORPD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst

C V/V AVX512DQ
OR AVX10.1

Return the bitwise logical XOR of packed double
precision floating-point values in zmm2 and
zmm3/m512/m64bcst subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

XORPD—Bitwise Logical XOR of Packed Double Precision Floating-Point Values Vol. 2D 6-43

Operation

VXORPD (EVEX Encoded Versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] := SRC1[i+63:i] BITWISE XOR SRC2[63:0];
ELSE DEST[i+63:i] := SRC1[i+63:i] BITWISE XOR SRC2[i+63:i];

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VXORPD (VEX.256 Encoded Version)
DEST[63:0] := SRC1[63:0] BITWISE XOR SRC2[63:0]
DEST[127:64] := SRC1[127:64] BITWISE XOR SRC2[127:64]
DEST[191:128] := SRC1[191:128] BITWISE XOR SRC2[191:128]
DEST[255:192] := SRC1[255:192] BITWISE XOR SRC2[255:192]
DEST[MAXVL-1:256] := 0

VXORPD (VEX.128 Encoded Version)
DEST[63:0] := SRC1[63:0] BITWISE XOR SRC2[63:0]
DEST[127:64] := SRC1[127:64] BITWISE XOR SRC2[127:64]
DEST[MAXVL-1:128] := 0

XORPD (128-bit Legacy SSE Version)
DEST[63:0] := DEST[63:0] BITWISE XOR SRC[63:0]
DEST[127:64] := DEST[127:64] BITWISE XOR SRC[127:64]
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VXORPD __m512d _mm512_xor_pd (__m512d a, __m512d b);
VXORPD __m512d _mm512_mask_xor_pd (__m512d a, __mmask8 m, __m512d b);
VXORPD __m512d _mm512_maskz_xor_pd (__mmask8 m, __m512d a);
VXORPD __m256d _mm256_xor_pd (__m256d a, __m256d b);
VXORPD __m256d _mm256_mask_xor_pd (__m256d a, __mmask8 m, __m256d b);
VXORPD __m256d _mm256_maskz_xor_pd (__mmask8 m, __m256d a);
XORPD __m128d _mm_xor_pd (__m128d a, __m128d b);
VXORPD __m128d _mm_mask_xor_pd (__m128d a, __mmask8 m, __m128d b);
VXORPD __m128d _mm_maskz_xor_pd (__mmask8 m, __m128d a);

SIMD Floating-Point Exceptions

None.

XORPD—Bitwise Logical XOR of Packed Double Precision Floating-Point Values Vol. 2D 6-44

Other Exceptions

Non-EVEX-encoded instructions, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-49, “Type E4 Class Exception Conditions.”

XORPS—Bitwise Logical XOR of Packed Single Precision Floating-Point Values Vol. 2D 6-45

XORPS—Bitwise Logical XOR of Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a bitwise logical XOR of the four, eight or sixteen packed single precision floating-point values from the
first source operand and the second source operand, and stores the result in the destination operand
EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand can be a ZMM
register or a vector memory location. The destination operand is a ZMM register conditionally updated with write-
mask k1.
VEX.256 and EVEX.256 encoded versions: The first source operand is a YMM register. The second source operand
is a YMM register or a 256-bit memory location. The destination operand is a YMM register (conditionally updated
with writemask k1 in case of EVEX). The upper bits (MAXVL-1:256) of the corresponding ZMM register destination
are zeroed.
VEX.128 and EVEX.128 encoded versions: The first source operand is an XMM register. The second source operand
is an XMM register or 128-bit memory location. The destination operand is an XMM register (conditionally updated
with writemask k1 in case of EVEX). The upper bits (MAXVL-1:128) of the corresponding ZMM register destination
are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding
register destination are unmodified.

Opcode/
Instruction

Op /
En

64/32 bit
Mode
Support

CPUID Feature
Flag

Description

NP 0F 57 /r
XORPS xmm1, xmm2/m128

A V/V SSE Return the bitwise logical XOR of packed single
precision floating-point values in xmm1 and
xmm2/mem.

VEX.128.0F.WIG 57 /r
VXORPS xmm1,xmm2, xmm3/m128

B V/V AVX Return the bitwise logical XOR of packed single
precision floating-point values in xmm2 and
xmm3/mem.

VEX.256.0F.WIG 57 /r
VXORPS ymm1, ymm2, ymm3/m256

B V/V AVX Return the bitwise logical XOR of packed single
precision floating-point values in ymm2 and
ymm3/mem.

EVEX.128.0F.W0 57 /r
VXORPS xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst

C V/V (AVX512VL AND
AVX512DQ) OR
AVX10.1

Return the bitwise logical XOR of packed single-
precision floating-point values in xmm2 and
xmm3/m128/m32bcst subject to writemask k1.

EVEX.256.0F.W0 57 /r
VXORPS ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst

C V/V (AVX512VL AND
AVX512DQ) OR
AVX10.1

Return the bitwise logical XOR of packed single-
precision floating-point values in ymm2 and
ymm3/m256/m32bcst subject to writemask k1.

EVEX.512.0F.W0 57 /r
VXORPS zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst

C V/V AVX512DQ
OR AVX10.1

Return the bitwise logical XOR of packed single-
precision floating-point values in zmm2 and
zmm3/m512/m32bcst subject to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

XORPS—Bitwise Logical XOR of Packed Single Precision Floating-Point Values Vol. 2D 6-46

Operation

VXORPS (EVEX Encoded Versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] := SRC1[i+31:i] BITWISE XOR SRC2[31:0];
ELSE DEST[i+31:i] := SRC1[i+31:i] BITWISE XOR SRC2[i+31:i];

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VXORPS (VEX.256 Encoded Version)
DEST[31:0] := SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32] := SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64] := SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96] := SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[159:128] := SRC1[159:128] BITWISE XOR SRC2[159:128]
DEST[191:160] := SRC1[191:160] BITWISE XOR SRC2[191:160]
DEST[223:192] := SRC1[223:192] BITWISE XOR SRC2[223:192]
DEST[255:224] := SRC1[255:224] BITWISE XOR SRC2[255:224].
DEST[MAXVL-1:256] := 0

VXORPS (VEX.128 Encoded Version)
DEST[31:0] := SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32] := SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64] := SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96] := SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[MAXVL-1:128] := 0

XORPS (128-bit Legacy SSE Version)
DEST[31:0] := SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32] := SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64] := SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96] := SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[MAXVL-1:128] (Unmodified)

XORPS—Bitwise Logical XOR of Packed Single Precision Floating-Point Values Vol. 2D 6-47

Intel C/C++ Compiler Intrinsic Equivalent

VXORPS __m512 _mm512_xor_ps (__m512 a, __m512 b);
VXORPS __m512 _mm512_mask_xor_ps (__m512 a, __mmask16 m, __m512 b);
VXORPS __m512 _mm512_maskz_xor_ps (__mmask16 m, __m512 a);
VXORPS __m256 _mm256_xor_ps (__m256 a, __m256 b);
VXORPS __m256 _mm256_mask_xor_ps (__m256 a, __mmask8 m, __m256 b);
VXORPS __m256 _mm256_maskz_xor_ps (__mmask8 m, __m256 a);
XORPS __m128 _mm_xor_ps (__m128 a, __m128 b);
VXORPS __m128 _mm_mask_xor_ps (__m128 a, __mmask8 m, __m128 b);
VXORPS __m128 _mm_maskz_xor_ps (__mmask8 m, __m128 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

Non-EVEX-encoded instructions, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-49, “Type E4 Class Exception Conditions.”

XRESLDTRK—Resume Tracking Load Addresses Vol. 2D 6-48

XRESLDTRK—Resume Tracking Load Addresses

Instruction Operand Encoding

Description

The instruction marks the end of an Intel TSX (RTM) suspend load address tracking region. If the instruction is used
inside a suspend load address tracking region it will end the suspend region and all following load addresses will be
added to the transaction read set. If this instruction is used inside an active transaction but not in a suspend region
it will cause transaction abort.
If the instruction is used outside of a transactional region it behaves like a NOP.
Chapter 16, “Programming with Intel® Transactional Synchronization Extensions‚” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1 provides additional information on Intel® TSX Suspend Load
Address Tracking.

Operation

XRESLDTRK
IF RTM_ACTIVE = 1:

IF SUSLDTRK_ACTIVE = 1:
SUSLDTRK_ACTIVE := 0

ELSE:
RTM_ABORT

ELSE:
NOP

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XRESLDTRK void _xresldtrk(void);

SIMD Floating-Point Exceptions

None.

Other Exceptions

#UD If CPUID.(EAX=7, ECX=0):EDX.TSXLDTRK[bit 16] = 0.
If the LOCK prefix is used.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID Feature
Flag

Description

F2 0F 01 E9
XRESLDTRK

ZO V/V TSXLDTRK Specifies the end of an Intel TSX suspend read
address tracking region.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A N/A

XRSTOR—Restore Processor Extended States Vol. 2D 6-49

XRSTOR—Restore Processor Extended States

Instruction Operand Encoding

Description

Performs a full or partial restore of processor state components from the XSAVE area located at the memory
address specified by the source operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask.
The specific state components restored correspond to the bits set in the requested-feature bitmap (RFBM), which
is the logical-AND of EDX:EAX and XCR0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1. Like FXRSTOR and FXSAVE, the memory format used for x87 state depends
on a REX.W prefix; see Section 13.5.1, “x87 State” of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1.

Section 13.8, “Operation of XRSTOR,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
1 provides a detailed description of the operation of the XRSTOR instruction. The following items provide a high-
level outline:
• Execution of XRSTOR may take one of two forms: standard and compacted. Bit 63 of the XCOMP_BV field in the

XSAVE header determines which form is used: value 0 specifies the standard form, while value 1 specifies the
compacted form.

• If RFBM[i] = 0, XRSTOR does not update state component i.1

• If RFBM[i] = 1 and bit i is clear in the XSTATE_BV field in the XSAVE header, XRSTOR initializes state
component i.

• If RFBM[i] = 1 and XSTATE_BV[i] = 1, XRSTOR loads state component i from the XSAVE area.
• The standard form of XRSTOR treats MXCSR (which is part of state component 1 — SSE) differently from the

XMM registers. If either form attempts to load MXCSR with an illegal value, a general-protection exception
(#GP) occurs.

• XRSTOR loads the internal value XRSTOR_INFO, which may be used to optimize a subsequent execution of
XSAVEOPT or XSAVES.

• Immediately following an execution of XRSTOR, the processor tracks as in-use (not in initial configuration) any
state component i for which RFBM[i] = 1 and XSTATE_BV[i] = 1; it tracks as modified any state component
i for which RFBM[i] = 0.

Use of a source operand not aligned to 64-byte boundary (for 64-bit and 32-bit modes) results in a general-protec-
tion (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

See Section 13.6, “Processor Tracking of XSAVE-Managed State,” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1 for discussion of the bitmaps XINUSE and XMODIFIED and of the quantity
XRSTOR_INFO.

Opcode /
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

NP 0F AE /5

XRSTOR mem

M V/V XSAVE Restore state components specified by EDX:EAX from
mem.

NP REX.W + 0F AE /5

XRSTOR64 mem

M V/N.E. XSAVE Restore state components specified by EDX:EAX from
mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) N/A N/A N/A

1. There is an exception if RFBM[1] = 0 and RFBM[2] = 1. In this case, the standard form of XRSTOR will load MXCSR from memory,
even though MXCSR is part of state component 1 — SSE. The compacted form of XRSTOR does not make this exception.

XRSTOR—Restore Processor Extended States Vol. 2D 6-50

Operation

RFBM := XCR0 AND EDX:EAX; /* bitwise logical AND */
COMPMASK := XCOMP_BV field from XSAVE header;
RSTORMASK := XSTATE_BV field from XSAVE header;

IF COMPMASK[63] = 0
THEN

/* Standard form of XRSTOR */
TO_BE_RESTORED := RFBM AND RSTORMASK;
TO_BE_INITIALIZED := RFBM AND NOT RSTORMASK;

IF TO_BE_RESTORED[0] = 1
THEN

XINUSE[0] := 1;
load x87 state from legacy region of XSAVE area;

ELSIF TO_BE_INITIALIZED[0] = 1
THEN

XINUSE[0] := 0;
initialize x87 state;

FI;

IF RFBM[1] = 1 OR RFBM[2] = 1
THEN load MXCSR from legacy region of XSAVE area;

FI;

IF TO_BE_RESTORED[1] = 1
THEN

XINUSE[1] := 1;
load XMM registers from legacy region of XSAVE area; // this step does not load MXCSR

ELSIF TO_BE_INITIALIZED[1] = 1
THEN

XINUSE[1] := 0;
set all XMM registers to 0; // this step does not initialize MXCSR

FI;

FOR i := 2 TO 62
IF TO_BE_RESTORED[i] = 1

THEN
XINUSE[i] := 1;
load XSAVE state component i at offset n from base of XSAVE area;

// n enumerated by CPUID(EAX=0DH,ECX=i):EBX)
ELSIF TO_BE_INITIALIZED[i] = 1

THEN
XINUSE[i] := 0;
initialize XSAVE state component i;

FI;
ENDFOR;

ELSE
/* Compacted form of XRSTOR */
IF CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0

THEN /* compacted form not supported */
#GP(0);

FI;

XRSTOR—Restore Processor Extended States Vol. 2D 6-51

FORMAT = COMPMASK AND 7FFFFFFF_FFFFFFFFH;
RESTORE_FEATURES = FORMAT AND RFBM;
TO_BE_RESTORED := RESTORE_FEATURES AND RSTORMASK;
FORCE_INIT := RFBM AND NOT FORMAT;
TO_BE_INITIALIZED = (RFBM AND NOT RSTORMASK) OR FORCE_INIT;

IF TO_BE_RESTORED[0] = 1
THEN

XINUSE[0] := 1;
load x87 state from legacy region of XSAVE area;

ELSIF TO_BE_INITIALIZED[0] = 1
THEN

XINUSE[0] := 0;
initialize x87 state;

FI;

IF TO_BE_RESTORED[1] = 1
THEN

XINUSE[1] := 1;
load SSE state from legacy region of XSAVE area; // this step loads the XMM registers and MXCSR

ELSIF TO_BE_INITIALIZED[1] = 1
THEN

set all XMM registers to 0;
XINUSE[1] := 0;
MXCSR := 1F80H;

FI;

NEXT_FEATURE_OFFSET = 576; // Legacy area and XSAVE header consume 576 bytes
FOR i := 2 TO 62

IF FORMAT[i] = 1
THEN

IF TO_BE_RESTORED[i] = 1
THEN

XINUSE[i] := 1;
load XSAVE state component i at offset NEXT_FEATURE_OFFSET from base of XSAVE area;

FI;
NEXT_FEATURE_OFFSET = NEXT_FEATURE_OFFSET + n (n enumerated by CPUID(EAX=0DH,ECX=i):EAX);

FI;
IF TO_BE_INITIALIZED[i] = 1

THEN
XINUSE[i] := 0;
initialize XSAVE state component i;

FI;
ENDFOR;

FI;

XMODIFIED := NOT RFBM;

IF in VMX non-root operation
THEN VMXNR := 1;
ELSE VMXNR := 0;

FI;
LAXA := linear address of XSAVE area;

XRSTOR—Restore Processor Extended States Vol. 2D 6-52

XRSTOR_INFO := CPL,VMXNR,LAXA,COMPMASK;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XRSTOR void _xrstor(void * , unsigned __int64);
XRSTOR void _xrstor64(void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If bit 63 of the XCOMP_BV field of the XSAVE header is 1 and
CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.
If the standard form is executed and a bit in XCR0 is 0 and the corresponding bit in the
XSTATE_BV field of the XSAVE header is 1.
If the standard form is executed and bytes 23:8 of the XSAVE header are not all zero.
If the compacted form is executed and a bit in XCR0 is 0 and the corresponding bit in the
XCOMP_BV field of the XSAVE header is 1.
If the compacted form is executed and a bit in the XCOMP_BV field in the XSAVE header is 0
and the corresponding bit in the XSTATE_BV field is 1.
If the compacted form is executed and bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 64-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
If bit 63 of the XCOMP_BV field of the XSAVE header is 1 and
CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.
If the standard form is executed and a bit in XCR0 is 0 and the corresponding bit in the
XSTATE_BV field of the XSAVE header is 1.
If the standard form is executed and bytes 23:8 of the XSAVE header are not all zero.
If the compacted form is executed and a bit in XCR0 is 0 and the corresponding bit in the
XCOMP_BV field of the XSAVE header is 1.

XRSTOR—Restore Processor Extended States Vol. 2D 6-53

If the compacted form is executed and a bit in the XCOMP_BV field in the XSAVE header is 0
and the corresponding bit in the XSTATE_BV field is 1.
If the compacted form is executed and bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If a memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If bit 63 of the XCOMP_BV field of the XSAVE header is 1 and
CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.
If the standard form is executed and a bit in XCR0 is 0 and the corresponding bit in the
XSTATE_BV field of the XSAVE header is 1.
If the standard form is executed and bytes 23:8 of the XSAVE header are not all zero.
If the compacted form is executed and a bit in XCR0 is 0 and the corresponding bit in the
XCOMP_BV field of the XSAVE header is 1.
If the compacted form is executed and a bit in the XCOMP_BV field in the XSAVE header is 0
and the corresponding bit in the XSTATE_BV field is 1.
If the compacted form is executed and bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 64-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

XRSTORS—Restore Processor Extended States Supervisor Vol. 2D 6-54

XRSTORS—Restore Processor Extended States Supervisor

Instruction Operand Encoding

Description

Performs a full or partial restore of processor state components from the XSAVE area located at the memory
address specified by the source operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask.
The specific state components restored correspond to the bits set in the requested-feature bitmap (RFBM), which
is the logical-AND of EDX:EAX and the logical-OR of XCR0 with the IA32_XSS MSR. XRSTORS may be executed only
if CPL = 0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1. Like FXRSTOR and FXSAVE, the memory format used for x87 state depends
on a REX.W prefix; see Section 13.5.1, “x87 State” of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1.

Section 13.12, “Operation of XRSTORS,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1 provides a detailed description of the operation of the XRSTOR instruction. The following items provide a
high-level outline:
• Execution of XRSTORS is similar to that of the compacted form of XRSTOR; XRSTORS cannot restore from an

XSAVE area in which the extended region is in the standard format (see Section 13.4.3, “Extended Region of an
XSAVE Area” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).

• XRSTORS differs from XRSTOR in that it can restore state components corresponding to bits set in the
IA32_XSS MSR.

• If RFBM[i] = 0, XRSTORS does not update state component i.
• If RFBM[i] = 1 and bit i is clear in the XSTATE_BV field in the XSAVE header, XRSTORS initializes state

component i.
• If RFBM[i] = 1 and XSTATE_BV[i] = 1, XRSTORS loads state component i from the XSAVE area.
• If XRSTORS attempts to load MXCSR with an illegal value, a general-protection exception (#GP) occurs.
• XRSTORS loads the internal value XRSTOR_INFO, which may be used to optimize a subsequent execution of

XSAVEOPT or XSAVES.
• Immediately following an execution of XRSTORS, the processor tracks as in-use (not in initial configuration)

any state component i for which RFBM[i] = 1 and XSTATE_BV[i] = 1; it tracks as modified any state component
i for which RFBM[i] = 0.

Use of a source operand not aligned to 64-byte boundary (for 64-bit and 32-bit modes) results in a general-protec-
tion (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

See Section 13.6, “Processor Tracking of XSAVE-Managed State,” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1 for discussion of the bitmaps XINUSE and XMODIFIED and of the quantity
XRSTOR_INFO.

Opcode /
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

NP 0F C7 /3

XRSTORS mem

M V/V XSS Restore state components specified by EDX:EAX from
mem.

NP REX.W + 0F C7 /3

XRSTORS64 mem

M V/N.E. XSS Restore state components specified by EDX:EAX from
mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) N/A N/A N/A

XRSTORS—Restore Processor Extended States Supervisor Vol. 2D 6-55

Operation

RFBM := (XCR0 OR IA32_XSS) AND EDX:EAX; /* bitwise logical OR and AND */
COMPMASK := XCOMP_BV field from XSAVE header;
RSTORMASK := XSTATE_BV field from XSAVE header;

FORMAT = COMPMASK AND 7FFFFFFF_FFFFFFFFH;
RESTORE_FEATURES = FORMAT AND RFBM;
TO_BE_RESTORED := RESTORE_FEATURES AND RSTORMASK;
FORCE_INIT := RFBM AND NOT FORMAT;
TO_BE_INITIALIZED = (RFBM AND NOT RSTORMASK) OR FORCE_INIT;

IF TO_BE_RESTORED[0] = 1
THEN

XINUSE[0] := 1;
load x87 state from legacy region of XSAVE area;

ELSIF TO_BE_INITIALIZED[0] = 1
THEN

XINUSE[0] := 0;
initialize x87 state;

FI;

IF TO_BE_RESTORED[1] = 1
THEN

XINUSE[1] := 1;
load SSE state from legacy region of XSAVE area; // this step loads the XMM registers and MXCSR

ELSIF TO_BE_INITIALIZED[1] = 1
THEN

set all XMM registers to 0;
XINUSE[1] := 0;
MXCSR := 1F80H;

FI;

NEXT_FEATURE_OFFSET = 576; // Legacy area and XSAVE header consume 576 bytes
FOR i := 2 TO 62

IF FORMAT[i] = 1
THEN

IF TO_BE_RESTORED[i] = 1
THEN

XINUSE[i] := 1;
load XSAVE state component i at offset NEXT_FEATURE_OFFSET from base of XSAVE area;

FI;
NEXT_FEATURE_OFFSET = NEXT_FEATURE_OFFSET + n (n enumerated by CPUID(EAX=0DH,ECX=i):EAX);

FI;
IF TO_BE_INITIALIZED[i] = 1

THEN
XINUSE[i] := 0;
initialize XSAVE state component i;

FI;
ENDFOR;

XMODIFIED := NOT RFBM;

IF in VMX non-root operation
THEN VMXNR := 1;

XRSTORS—Restore Processor Extended States Supervisor Vol. 2D 6-56

ELSE VMXNR := 0;
FI;
LAXA := linear address of XSAVE area;
XRSTOR_INFO := CPL,VMXNR,LAXA,COMPMASK;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XRSTORS void _xrstors(void * , unsigned __int64);
XRSTORS64 void _xrstors64(void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If CPL > 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If bit 63 of the XCOMP_BV field of the XSAVE header is 0.
If a bit in XCR0|IA32_XSS is 0 and the corresponding bit in the XCOMP_BV field of the XSAVE
header is 1.
If a bit in the XCOMP_BV field in the XSAVE header is 0 and the corresponding bit in the
XSTATE_BV field is 1.
If bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
If bit 63 of the XCOMP_BV field of the XSAVE header is 0.
If a bit in XCR0|IA32_XSS is 0 and the corresponding bit in the XCOMP_BV field of the XSAVE
header is 1.
If a bit in the XCOMP_BV field in the XSAVE header is 0 and the corresponding bit in the
XSTATE_BV field is 1.
If bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

XRSTORS—Restore Processor Extended States Supervisor Vol. 2D 6-57

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If CPL > 0.

If a memory address is in a non-canonical form.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If bit 63 of the XCOMP_BV field of the XSAVE header is 0.
If a bit in XCR0|IA32_XSS is 0 and the corresponding bit in the XCOMP_BV field of the XSAVE
header is 1.
If a bit in the XCOMP_BV field in the XSAVE header is 0 and the corresponding bit in the
XSTATE_BV field is 1.
If bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

XSAVE—Save Processor Extended States Vol. 2D 6-58

XSAVE—Save Processor Extended States

Instruction Operand Encoding

Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address
specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The
specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), which is the
logical-AND of EDX:EAX and XCR0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1. Like FXRSTOR and FXSAVE, the memory format used for x87 state depends
on a REX.W prefix; see Section 13.5.1, “x87 State” of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1.

Section 13.7, “Operation of XSAVE,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1
provides a detailed description of the operation of the XSAVE instruction. The following items provide a high-level
outline:
• XSAVE saves state component i if and only if RFBM[i] = 1.1

• XSAVE does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy
Region of an XSAVE Area” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).

• XSAVE reads the XSTATE_BV field of the XSAVE header (see Section 13.4.2, “XSAVE Header” of Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1) and writes a modified value back to memory as
follows. If RFBM[i] = 1, XSAVE writes XSTATE_BV[i] with the value of XINUSE[i]. (XINUSE is a bitmap by which
the processor tracks the status of various state components. See Section 13.6, “Processor Tracking of XSAVE-
Managed State” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.) If RFBM[i] = 0,
XSAVE writes XSTATE_BV[i] with the value that it read from memory (it does not modify the bit). XSAVE does
not write to any part of the XSAVE header other than the XSTATE_BV field.

• XSAVE always uses the standard format of the extended region of the XSAVE area (see Section 13.4.3,
“Extended Region of an XSAVE Area” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1).

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) results in a
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Opcode /
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

NP 0F AE /4

XSAVE mem

M V/V XSAVE Save state components specified by EDX:EAX to mem.

NP REX.W + 0F AE /4

XSAVE64 mem

M V/N.E. XSAVE Save state components specified by EDX:EAX to mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) N/A N/A N/A

1. An exception is made for MXCSR and MXCSR_MASK, which belong to state component 1 — SSE. XSAVE saves these values to mem-
ory if either RFBM[1] or RFBM[2] is 1.

XSAVE—Save Processor Extended States Vol. 2D 6-59

Operation

RFBM := XCR0 AND EDX:EAX; /* bitwise logical AND */
OLD_BV := XSTATE_BV field from XSAVE header;

IF RFBM[0] = 1
THEN store x87 state into legacy region of XSAVE area;

FI;

IF RFBM[1] = 1
THEN store XMM registers into legacy region of XSAVE area; // this step does not save MXCSR or MXCSR_MASK

FI;

IF RFBM[1] = 1 OR RFBM[2] = 1
THEN store MXCSR and MXCSR_MASK into legacy region of XSAVE area;

FI;

FOR i := 2 TO 62
IF RFBM[i] = 1

THEN save XSAVE state component i at offset n from base of XSAVE area (n enumerated by CPUID(EAX=0DH,ECX=i):EBX);
FI;

ENDFOR;

XSTATE_BV field in XSAVE header := (OLD_BV AND NOT RFBM) OR (XINUSE AND RFBM);

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSAVE void _xsave(void * , unsigned __int64);
XSAVE void _xsave64(void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 64-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

XSAVE—Save Processor Extended States Vol. 2D 6-60

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 64-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

XSAVEC—Save Processor Extended States With Compaction Vol. 2D 6-61

XSAVEC—Save Processor Extended States With Compaction

Instruction Operand Encoding

Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address
specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The
specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), which is the
logical-AND of EDX:EAX and XCR0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1. Like FXRSTOR and FXSAVE, the memory format used for x87 state depends
on a REX.W prefix; see Section 13.5.1, “x87 State” of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1.

Section 13.10, “Operation of XSAVEC,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
1 provides a detailed description of the operation of the XSAVEC instruction. The following items provide a high-
level outline:
• Execution of XSAVEC is similar to that of XSAVE. XSAVEC differs from XSAVE in that it uses compaction and that

it may use the init optimization.
• XSAVEC saves state component i if and only if RFBM[i] = 1 and XINUSE[i] = 1.1 (XINUSE is a bitmap by which

the processor tracks the status of various state components. See Section 13.6, “Processor Tracking of XSAVE-
Managed State” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.)

• XSAVEC does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy
Region of an XSAVE Area” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).

• XSAVEC writes the logical AND of RFBM and XINUSE to the XSTATE_BV field of the XSAVE header.2,3 (See
Section 13.4.2, “XSAVE Header” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.)
XSAVEC sets bit 63 of the XCOMP_BV field and sets bits 62:0 of that field to RFBM[62:0]. XSAVEC does not
write to any parts of the XSAVE header other than the XSTATE_BV and XCOMP_BV fields.

• XSAVEC always uses the compacted format of the extended region of the XSAVE area (see Section 13.4.3,
“Extended Region of an XSAVE Area” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1).

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) results in a
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Opcode /
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

NP 0F C7 /4

XSAVEC mem

M V/V XSAVEC Save state components specified by EDX:EAX to mem with
compaction.

NP REX.W + 0F C7 /4

XSAVEC64 mem

M V/N.E. XSAVEC Save state components specified by EDX:EAX to mem with
compaction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) N/A N/A N/A

1. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be 0 even if MXCSR does not
have its initial value of 1F80H. In this case, XSAVEC saves SSE state as long as RFBM[1] = 1.

2. Unlike XSAVE and XSAVEOPT, XSAVEC clears bits in the XSTATE_BV field that correspond to bits that are clear in RFBM.

3. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be 0 even if MXCSR does not
have its initial value of 1F80H. In this case, XSAVEC sets XSTATE_BV[1] to 1 as long as RFBM[1] = 1.

XSAVEC—Save Processor Extended States With Compaction Vol. 2D 6-62

Operation

RFBM := XCR0 AND EDX:EAX; /* bitwise logical AND */
TO_BE_SAVED := RFBM AND XINUSE; /* bitwise logical AND */
If MXCSR ≠ 1F80H AND RFBM[1]

TO_BE_SAVED[1] = 1;
FI;

IF TO_BE_SAVED[0] = 1
THEN store x87 state into legacy region of XSAVE area;

FI;

IF TO_BE_SAVED[1] = 1
THEN store SSE state into legacy region of XSAVE area; // this step saves the XMM registers, MXCSR, and MXCSR_MASK

FI;

NEXT_FEATURE_OFFSET = 576; // Legacy area and XSAVE header consume 576 bytes
FOR i := 2 TO 62

IF RFBM[i] = 1
THEN

IF TO_BE_SAVED[i]
THEN save XSAVE state component i at offset NEXT_FEATURE_OFFSET from base of XSAVE area;

FI;
NEXT_FEATURE_OFFSET = NEXT_FEATURE_OFFSET + n (n enumerated by CPUID(EAX=0DH,ECX=i):EAX);

FI;
ENDFOR;

XSTATE_BV field in XSAVE header := TO_BE_SAVED;
XCOMP_BV field in XSAVE header := RFBM OR 80000000_00000000H;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSAVEC void _xsavec(void * , unsigned __int64);
XSAVEC64 void _xsavec64(void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

XSAVEC—Save Processor Extended States With Compaction Vol. 2D 6-63

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 64-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 64-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

XSAVEOPT—Save Processor Extended States Optimized Vol. 2D 6-64

XSAVEOPT—Save Processor Extended States Optimized

Instruction Operand Encoding

Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address
specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The
specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), which is the
logical-AND of EDX:EAX and XCR0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1. Like FXRSTOR and FXSAVE, the memory format used for x87 state depends
on a REX.W prefix; see Section 13.5.1, “x87 State” of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1.

Section 13.9, “Operation of XSAVEOPT,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
1 provides a detailed description of the operation of the XSAVEOPT instruction. The following items provide a high-
level outline:
• Execution of XSAVEOPT is similar to that of XSAVE. XSAVEOPT differs from XSAVE in that it may use the init and

modified optimizations. The performance of XSAVEOPT will be equal to or better than that of XSAVE.
• XSAVEOPT saves state component i only if RFBM[i] = 1 and XINUSE[i] = 1.1 (XINUSE is a bitmap by which the

processor tracks the status of various state components. See Section 13.6, “Processor Tracking of XSAVE-
Managed State,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.) Even if
both bits are 1, XSAVEOPT may optimize and not save state component i if (1) state component i has not been
modified since the last execution of XRSTOR or XRSTORS; and (2) this execution of XSAVES corresponds to
that last execution of XRSTOR or XRSTORS as determined by the internal value XRSTOR_INFO (see the
Operation section below).

• XSAVEOPT does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy
Region of an XSAVE Area” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).

• XSAVEOPT reads the XSTATE_BV field of the XSAVE header (see Section 13.4.2, “XSAVE Header,” of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1) and writes a modified value back to
memory as follows. If RFBM[i] = 1, XSAVEOPT writes XSTATE_BV[i] with the value of XINUSE[i]. If RFBM[i] =
0, XSAVEOPT writes XSTATE_BV[i] with the value that it read from memory (it does not modify the bit).
XSAVEOPT does not write to any part of the XSAVE header other than the XSTATE_BV field.

• XSAVEOPT always uses the standard format of the extended region of the XSAVE area (see Section 13.4.3,
“Extended Region of an XSAVE Area” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1).

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) will result in a
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

NP 0F AE /6

XSAVEOPT mem

M V/V XSAVEOPT Save state components specified by EDX:EAX
to mem, optimizing if possible.

NP REX.W + 0F AE /6

XSAVEOPT64 mem

M V/V XSAVEOPT Save state components specified by EDX:EAX
to mem, optimizing if possible.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) N/A N/A N/A

1. There is an exception made for MXCSR and MXCSR_MASK, which belong to state component 1 — SSE. XSAVEOPT always saves
these to memory if RFBM[1] = 1 or RFBM[2] = 1, regardless of the value of XINUSE.

XSAVEOPT—Save Processor Extended States Optimized Vol. 2D 6-65

See Section 13.6, “Processor Tracking of XSAVE-Managed State,” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1 for discussion of the bitmap XMODIFIED and of the quantity XRSTOR_INFO.

Operation

RFBM := XCR0 AND EDX:EAX; /* bitwise logical AND */
OLD_BV := XSTATE_BV field from XSAVE header;
TO_BE_SAVED := RFBM AND XINUSE;

IF in VMX non-root operation
THEN VMXNR := 1;
ELSE VMXNR := 0;

FI;
LAXA := linear address of XSAVE area;
IF XRSTOR_INFO = CPL,VMXNR,LAXA,00000000_00000000H

THEN TO_BE_SAVED := TO_BE_SAVED AND XMODIFIED;
FI;

IF TO_BE_SAVED[0] = 1
THEN store x87 state into legacy region of XSAVE area;

FI;

IF TO_BE_SAVED[1]
THEN store XMM registers into legacy region of XSAVE area; // this step does not save MXCSR or MXCSR_MASK

FI;

IF RFBM[1] = 1 or RFBM[2] = 1
THEN store MXCSR and MXCSR_MASK into legacy region of XSAVE area;

FI;

FOR i := 2 TO 62
IF TO_BE_SAVED[i] = 1

THEN save XSAVE state component i at offset n from base of XSAVE area (n enumerated by CPUID(EAX=0DH,ECX=i):EBX);
FI;

ENDFOR;

XSTATE_BV field in XSAVE header := (OLD_BV AND NOT RFBM) OR (XINUSE AND RFBM);

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSAVEOPT void _xsaveopt(void * , unsigned __int64);
XSAVEOPT void _xsaveopt64(void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.

XSAVEOPT—Save Processor Extended States Optimized Vol. 2D 6-66

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEOPT[bit 0] =
0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 64-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEOPT[bit 0] =

0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEOPT[bit 0] =

0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 64-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

XSAVES—Save Processor Extended States Supervisor Vol. 2D 6-67

XSAVES—Save Processor Extended States Supervisor

Instruction Operand Encoding

Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address
specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The
specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), the logical-
AND of EDX:EAX and the logical-OR of XCR0 with the IA32_XSS MSR. XSAVES may be executed only if CPL = 0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1. Like FXRSTOR and FXSAVE, the memory format used for x87 state
depends on a REX.W prefix; see Section 13.5.1, “x87 State,” of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1.

Section 13.11, “Operation of XSAVES,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1 provides a detailed description of the operation of the XSAVES instruction. The following items provide a
high-level outline:
• Execution of XSAVES is similar to that of XSAVEC. XSAVES differs from XSAVEC in that it can save state

components corresponding to bits set in the IA32_XSS MSR and that it may use the modified optimization.
• XSAVES saves state component i only if RFBM[i] = 1 and XINUSE[i] = 1.1 (XINUSE is a bitmap by which the

processor tracks the status of various state components. See Section 13.6, “Processor Tracking of XSAVE-
Managed State,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.) Even if
both bits are 1, XSAVES may optimize and not save state component i if (1) state component i has not been
modified since the last execution of XRSTOR or XRSTORS; and (2) this execution of XSAVES correspond to that
last execution of XRSTOR or XRSTORS as determined by XRSTOR_INFO (see the Operation section below).

• XSAVES does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy
Region of an XSAVE Area,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).

• XSAVES writes the logical AND of RFBM and XINUSE to the XSTATE_BV field of the XSAVE header.2 (See Section
13.4.2, “XSAVE Header,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.)
XSAVES sets bit 63 of the XCOMP_BV field and sets bits 62:0 of that field to RFBM[62:0]. XSAVES does not
write to any parts of the XSAVE header other than the XSTATE_BV and XCOMP_BV fields.

• XSAVES always uses the compacted format of the extended region of the XSAVE area (see Section 13.4.3,
“Extended Region of an XSAVE Area,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1).

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) results in a
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Opcode /
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

NP 0F C7 /5

XSAVES mem

M V/V XSS Save state components specified by EDX:EAX to
mem with compaction, optimizing if possible.

NP REX.W + 0F C7 /5

XSAVES64 mem

M V/N.E. XSS Save state components specified by EDX:EAX to
mem with compaction, optimizing if possible.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) N/A N/A N/A

1. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be 0 even if MXCSR does not
have its initial value of 1F80H. In this case, the init optimization does not apply and XSAVEC will save SSE state as long as RFBM[1] =
1 and the modified optimization is not being applied.

2. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be 0 even if MXCSR does not
have its initial value of 1F80H. In this case, XSAVES sets XSTATE_BV[1] to 1 as long as RFBM[1] = 1.

XSAVES—Save Processor Extended States Supervisor Vol. 2D 6-68

See Section 13.6, “Processor Tracking of XSAVE-Managed State,” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1 for discussion of the bitmap XMODIFIED and of the quantity XRSTOR_INFO.

Operation

RFBM := (XCR0 OR IA32_XSS) AND EDX:EAX; /* bitwise logical OR and AND */
IF in VMX non-root operation

THEN VMXNR := 1;
ELSE VMXNR := 0;

FI;
LAXA := linear address of XSAVE area;
COMPMASK := RFBM OR 80000000_00000000H;
TO_BE_SAVED := RFBM AND XINUSE;
IF XRSTOR_INFO = CPL,VMXNR,LAXA,COMPMASK

THEN TO_BE_SAVED := TO_BE_SAVED AND XMODIFIED;
FI;
IF MXCSR ≠ 1F80H AND RFBM[1]

THEN TO_BE_SAVED[1] = 1;
FI;

IF TO_BE_SAVED[0] = 1
THEN store x87 state into legacy region of XSAVE area;

FI;

IF TO_BE_SAVED[1] = 1
THEN store SSE state into legacy region of XSAVE area; // this step saves the XMM registers, MXCSR, and MXCSR_MASK

FI;

NEXT_FEATURE_OFFSET = 576; // Legacy area and XSAVE header consume 576 bytes
FOR i := 2 TO 62

IF RFBM[i] = 1
THEN

IF TO_BE_SAVED[i]
THEN

save XSAVE state component i at offset NEXT_FEATURE_OFFSET from base of XSAVE area;
IF i = 8 // state component 8 is for PT state

THEN IA32_RTIT_CTL.TraceEn[bit 0] := 0;
FI;

FI;
NEXT_FEATURE_OFFSET = NEXT_FEATURE_OFFSET + n (n enumerated by CPUID(EAX=0DH,ECX=i):EAX);

FI;
ENDFOR;

NEW_HEADER := RFBM AND XINUSE;
IF MXCSR ≠ 1F80H AND RFBM[1]

THEN NEW_HEADER[1] = 1;
FI;
XSTATE_BV field in XSAVE header := NEW_HEADER;
XCOMP_BV field in XSAVE header := COMPMASK;

Flags Affected

None.

XSAVES—Save Processor Extended States Supervisor Vol. 2D 6-69

Intel C/C++ Compiler Intrinsic Equivalent

XSAVES void _xsaves(void * , unsigned __int64);
XSAVES64 void _xsaves64(void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If CPL > 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If CPL > 0.

If the memory address is in a non-canonical form.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

XSETBV—Set Extended Control Register Vol. 2D 6-70

XSETBV—Set Extended Control Register

Instruction Operand Encoding

Description

Writes the contents of registers EDX:EAX into the 64-bit extended control register (XCR) specified in the ECX
register. (On processors that support the Intel 64 architecture, the high-order 32 bits of RCX are ignored.) The
contents of the EDX register are copied to high-order 32 bits of the selected XCR and the contents of the EAX
register are copied to low-order 32 bits of the XCR. (On processors that support the Intel 64 architecture, the high-
order 32 bits of each of RAX and RDX are ignored.) Undefined or reserved bits in an XCR should be set to values
previously read.

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a general protection
exception #GP(0) is generated. Specifying a reserved or unimplemented XCR in ECX will also cause a general
protection exception. The processor will also generate a general protection exception if software attempts to write
to reserved bits in an XCR.

Currently, only XCR0 is supported. Thus, all other values of ECX are reserved and will cause a #GP(0). Note that
bit 0 of XCR0 (corresponding to x87 state) must be set to 1; the instruction will cause a #GP(0) if an attempt is
made to clear this bit. In addition, the instruction causes a #GP(0) if an attempt is made to set XCR0[2] (AVX state)
while clearing XCR0[1] (SSE state); it is necessary to set both bits to use AVX instructions; Section 13.3, “Enabling
the XSAVE Feature Set and XSAVE-Enabled Features,” of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1.

Operation

XCR[ECX] := EDX:EAX;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSETBV void _xsetbv(unsigned int, unsigned __int64);

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an invalid XCR is specified in ECX.
If the value in EDX:EAX sets bits that are reserved in the XCR specified by ECX.
If an attempt is made to clear bit 0 of XCR0.
If an attempt is made to set XCR0[2:1] to 10b.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

NP 0F 01 D1 XSETBV ZO Valid Valid Write the value in EDX:EAX to the XCR
specified by ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

XSETBV—Set Extended Control Register Vol. 2D 6-71

Real-Address Mode Exceptions
#GP If an invalid XCR is specified in ECX.

If the value in EDX:EAX sets bits that are reserved in the XCR specified by ECX.
If an attempt is made to clear bit 0 of XCR0.
If an attempt is made to set XCR0[2:1] to 10b.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The XSETBV instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

XSUSLDTRK—Suspend Tracking Load Addresses Vol. 2D 6-72

XSUSLDTRK—Suspend Tracking Load Addresses

Instruction Operand Encoding

Description

The instruction marks the start of an Intel TSX (RTM) suspend load address tracking region. If the instruction is
used inside a transactional region, subsequent loads are not added to the read set of the transaction. If the instruc-
tion is used inside a suspend load address tracking region it will cause transaction abort.
If the instruction is used outside of a transactional region it behaves like a NOP.
Chapter 16, “Programming with Intel® Transactional Synchronization Extensions‚” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1 provides additional information on Intel® TSX Suspend Load
Address Tracking.

Operation

XSUSLDTRK
IF RTM_ACTIVE = 1:

IF SUSLDTRK_ACTIVE = 0:
SUSLDTRK_ACTIVE := 1

ELSE:
RTM_ABORT

ELSE:
NOP

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSUSLDTRK void _xsusldtrk(void);

SIMD Floating-Point Exceptions

None.

Other Exceptions

#UD If CPUID.(EAX=7, ECX=0):EDX.TSXLDTRK[bit 16] = 0.
If the LOCK prefix is used.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID Feature
Flag

Description

F2 0F 01 E8
XSUSLDTRK

ZO V/V TSXLDTRK Specifies the start of an Intel TSX suspend read
address tracking region.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A N/A

XTEST—Test if in Transactional Execution Vol. 2D 6-73

XTEST—Test if in Transactional Execution

Instruction Operand Encoding

Description

The XTEST instruction queries the transactional execution status. If the instruction executes inside a transaction-
ally executing RTM region or a transactionally executing HLE region, then the ZF flag is cleared, else it is set.

Operation

XTEST
IF (RTM_ACTIVE = 1 OR HLE_ACTIVE = 1)

THEN
ZF := 0

ELSE
ZF := 1

FI;

Flags Affected

The ZF flag is cleared if the instruction is executed transactionally; otherwise it is set to 1. The CF, OF, SF, PF, and
AF, flags are cleared.

Intel C/C++ Compiler Intrinsic Equivalent

XTEST int _xtest(void);

SIMD Floating-Point Exceptions

None.

Other Exceptions
#UD CPUID.(EAX=7, ECX=0):EBX.HLE[bit 4] = 0 and CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11] =

0.
If LOCK prefix is used.

Opcode/Instruction Op/
En

64/32bit
Mode
Support

CPUID
Feature
Flag

Description

NP 0F 01 D6
XTEST

ZO V/V HLE or
RTM

Test if executing in a transactional region.

Op/En Operand 1 Operand2 Operand3 Operand4

ZO N/A N/A N/A N/A

Vol. 2D 7-1

CHAPTER 7
SAFER MODE EXTENSIONS REFERENCE

7.1 OVERVIEW
This chapter describes the Safer Mode Extensions (SMX) for the Intel 64 and IA-32 architectures. Safer Mode
Extensions (SMX) provide a programming interface for system software to establish a measured environment
within the platform to support trust decisions by end users. The measured environment includes:
• Measured launch of a system executive, referred to as a Measured Launched Environment (MLE)1. The system

executive may be based on a Virtual Machine Monitor (VMM), a measured VMM is referred to as MVMM2.
• Mechanisms to ensure the above measurement is protected and stored in a secure location in the platform.
• Protection mechanisms that allow the VMM to control attempts to modify the VMM.

The measurement and protection mechanisms used by a measured environment are supported by the capabilities
of an Intel® Trusted Execution Technology (Intel® TXT) platform:
• The SMX are the processor’s programming interface in an Intel TXT platform.
• The chipset in an Intel TXT platform provides enforcement of the protection mechanisms.
• Trusted Platform Module (TPM) 1.2 in the platform provides platform configuration registers (PCRs) to store

software measurement values.

7.2 SMX FUNCTIONALITY
SMX functionality is provided in an Intel 64 processor through the GETSEC instruction via leaf functions. The
GETSEC instruction supports multiple leaf functions. Leaf functions are selected by the value in EAX at the time
GETSEC is executed. Each GETSEC leaf function is documented separately in the reference pages with a unique
mnemonic (even though these mnemonics share the same opcode, 0F 37).

7.2.1 Detecting and Enabling SMX
Software can detect support for SMX operation using the CPUID instruction. If software executes CPUID with 1 in
EAX, a value of 1 in bit 6 of ECX indicates support for SMX operation (GETSEC is available), see CPUID instruction
for the layout of feature flags of reported by CPUID.01H:ECX.

System software enables SMX operation by setting CR4.SMXE[Bit 14] = 1 before attempting to execute GETSEC.
Otherwise, execution of GETSEC results in the processor signaling an invalid opcode exception (#UD).

If the CPUID SMX feature flag is clear (CPUID.01H.ECX[Bit 6] = 0), attempting to set CR4.SMXE[Bit 14] results in
a general protection exception.

The IA32_FEATURE_CONTROL MSR (at address 03AH) provides feature control bits that configure operation of
VMX and SMX. These bits are documented in Table 7-1.

1. See the Intel® Trusted Execution Technology Measured Launched Environment Programming Guide.

2. An MVMM is sometimes referred to as a measured launched environment (MLE). See the Intel® Trusted Execution Technology Mea-
sured Launched Environment Programming Guide.

Table 7-1. Layout of IA32_FEATURE_CONTROL

Bit Position Description

0 Lock bit (0 = unlocked, 1 = locked). When set to '1' further writes to this MSR are blocked.

1 Enable VMX in SMX operation.

2 Enable VMX outside SMX operation.

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-2

• Bit 0 is a lock bit. If the lock bit is clear, an attempt to execute VMXON will cause a general-protection
exception. Attempting to execute GETSEC[SENTER] when the lock bit is clear will also cause a general-
protection exception. If the lock bit is set, WRMSR to the IA32_FEATURE_CONTROL MSR will cause a general-
protection exception. Once the lock bit is set, the MSR cannot be modified until a power-on reset. System BIOS
can use this bit to provide a setup option for BIOS to disable support for VMX, SMX or both VMX and SMX.

• Bit 1 enables VMX in SMX operation (between executing the SENTER and SEXIT leaves of GETSEC). If this bit
is clear, an attempt to execute VMXON in SMX will cause a general-protection exception if executed in SMX
operation. Attempts to set this bit on logical processors that do not support both VMX operation (Chapter 7,
“Safer Mode Extensions Reference”) and SMX operation cause general-protection exceptions.

• Bit 2 enables VMX outside SMX operation. If this bit is clear, an attempt to execute VMXON will cause a general-
protection exception if executed outside SMX operation. Attempts to set this bit on logical processors that do
not support VMX operation cause general-protection exceptions.

• Bits 8 through 14 specify enabled functionality of the SENTER leaf function. Each bit in the field represents an
enable control for a corresponding SENTER function. Only enabled SENTER leaf functionality can be used when
executing SENTER.

• Bits 15 specify global enable of all SENTER functionalities.

7.2.2 SMX Instruction Summary
System software must first query for available GETSEC leaf functions by executing GETSEC[CAPABILITIES]. The
CAPABILITIES leaf function returns a bit map of available GETSEC leaves. An attempt to execute an unsupported
leaf index results in an undefined opcode (#UD) exception.

7:3 Reserved

14:8 SENTER Local Function Enables: When set, each bit in the field represents an enable control for a corresponding
SENTER function.

15 SENTER Global Enable: Must be set to ‘1’ to enable operation of GETSEC[SENTER].

16 Reserved

17 SGX Launch Control Enable: Must be set to ‘1’ to enable runtime re-configuration of SGX Launch Control via the
IA32_SGXLEPUBKEYHASHn MSR.

18 SGX Global Enable: Must be set to ‘1’ to enable Intel SGX leaf functions.

19 Reserved

20 LMCE On: When set, system software can program the MSRs associated with LMCE to configure delivery of some
machine check exceptions to a single logical processor.

63:21 Reserved

Table 7-1. Layout of IA32_FEATURE_CONTROL

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-3

7.2.2.1 GETSEC[CAPABILITIES]
The SMX functionality provides an architectural interface for newer processor generations to extend SMX capabili-
ties. Specifically, the GETSEC instruction provides a capability leaf function for system software to discover the
available GETSEC leaf functions that are supported in a processor. Table 7-2 lists the currently available GETSEC
leaf functions.
.

7.2.2.2 GETSEC[ENTERACCS]
The GETSEC[ENTERACCS] leaf enables authenticated code execution mode. The ENTERACCS leaf function
performs an authenticated code module load using the chipset public key as the signature verification. ENTERACCS
requires the existence of an Intel® Trusted Execution Technology capable chipset since it unlocks the chipset
private configuration register space after successful authentication of the loaded module. The physical base
address and size of the authenticated code module are specified as input register values in EBX and ECX, respec-
tively.

While in the authenticated code execution mode, certain processor state properties change. For this reason, the
time in which the processor operates in authenticated code execution mode should be limited to minimize impact
on external system events.

Upon entry into, the previous paging context is disabled (since the authenticated code module image is specified
with physical addresses and can no longer rely upon external memory-based page-table structures).

Prior to executing the GETSEC[ENTERACCS] leaf, system software must ensure the logical processor issuing
GETSEC[ENTERACCS] is the boot-strap processor (BSP), as indicated by IA32_APIC_BASE.BSP = 1. System soft-
ware must ensure other logical processors are in a suitable idle state and not marked as BSP.

The GETSEC[ENTERACCS] leaf may be used by different agents to load different authenticated code modules to
perform functions related to different aspects of a measured environment, for example system software and
Intel® TXT enabled BIOS may use more than one authenticated code modules.

7.2.2.3 GETSEC[EXITAC]
GETSEC[EXITAC] takes the processor out of authenticated code execution mode. When this instruction leaf is
executed, the contents of the authenticated code execution area are scrubbed and control is transferred to the
non-authenticated context defined by a near pointer passed with the GETSEC[EXITAC] instruction.

The authenticated code execution area is no longer accessible after completion of GETSEC[EXITAC]. RBX (or EBX)
holds the address of the near absolute indirect target to be taken.

Table 7-2. GETSEC Leaf Functions

Index (EAX) Leaf function Description

0 CAPABILITIES Returns the available leaf functions of the GETSEC instruction.

1 Undefined Reserved

2 ENTERACCS Enter

3 EXITAC Exit

4 SENTER Launch an MLE.

5 SEXIT Exit the MLE.

6 PARAMETERS Return SMX related parameter information.

7 SMCTRL SMX mode control.

8 WAKEUP Wake up sleeping processors in safer mode.

9 - (4G-1) Undefined Reserved

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-4

7.2.2.4 GETSEC[SENTER]
The GETSEC[SENTER] leaf function is used by the initiating logical processor (ILP) to launch an MLE.
GETSEC[SENTER] can be considered a superset of the ENTERACCS leaf, because it enters as part of the measured
environment launch.

Measured environment startup consists of the following steps:
• the ILP rendezvous the responding logical processors (RLPs) in the platform into a controlled state (At the

completion of this handshake, all the RLPs except for the ILP initiating the measured environment launch are
placed in a newly defined SENTER sleep state).

• Load and authenticate the authenticated code module required by the measured environment, and enter
authenticated code execution mode.

• Verify and lock certain system configuration parameters.
• Measure the dynamic root of trust and store into the PCRs in TPM.
• Transfer control to the MLE with interrupts disabled.

Prior to executing the GETSEC[SENTER] leaf, system software must ensure the platform’s TPM is ready for access
and the ILP is the boot-strap processor (BSP), as indicated by IA32_APIC_BASE.BSP. System software must ensure
other logical processors (RLPs) are in a suitable idle state and not marked as BSP.

System software launching a measurement environment is responsible for providing a proper authenticate code
module address when executing GETSEC[SENTER]. The AC module responsible for the launch of a measured envi-
ronment and loaded by GETSEC[SENTER] is referred to as SINIT. See Intel® Trusted Execution Technology
Measured Launched Environment Programming Guide for additional information on system software requirements
prior to executing GETSEC[SENTER].

7.2.2.5 GETSEC[SEXIT]
System software exits the measured environment by executing the instruction GETSEC[SEXIT] on the ILP. This
instruction rendezvous the responding logical processors in the platform for exiting from the measured environ-
ment. External events (if left masked) are unmasked and Intel® TXT-capable chipset’s private configuration space
is re-locked.

7.2.2.6 GETSEC[PARAMETERS]
The GETSEC[PARAMETERS] leaf function is used to report attributes, options, and limitations of SMX operation.
Software uses this leaf to identify operating limits or additional options.

The information reported by GETSEC[PARAMETERS] may require executing the leaf multiple times using EBX as an
index. If the GETSEC[PARAMETERS] instruction leaf or if a specific parameter field is not available, then SMX oper-
ation should be interpreted to use the default limits of respective GETSEC leaves or parameter fields defined in the
GETSEC[PARAMETERS] leaf.

7.2.2.7 GETSEC[SMCTRL]
The GETSEC[SMCTRL] leaf function is used for providing additional control over specific conditions associated with
the SMX architecture. An input register is supported for selecting the control operation to be performed. See the
specific leaf description for details on the type of control provided.

7.2.2.8 GETSEC[WAKEUP]
Responding logical processors (RLPs) are placed in the SENTER sleep state after the initiating logical processor
executes GETSEC[SENTER]. The ILP can wake up RLPs to join the measured environment by using
GETSEC[WAKEUP]. When the RLPs in SENTER sleep state wake up, these logical processors begin execution at the
entry point defined in a data structure held in system memory (pointed to by an chipset register LT.MLE.JOIN) in
TXT configuration space.

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-5

7.2.3 Measured Environment and SMX
This section gives a simplified view of a representative life cycle of a measured environment that is launched by a
system executive using SMX leaf functions. The Intel® Trusted Execution Technology Measured Launched Environ-
ment Programming Guide provides more detailed examples of using SMX and chipset resources (including chipset
registers, Trusted Platform Module) to launch an MVMM.

The life cycle starts with the system executive (an OS, an OS loader, and so forth) loading the MLE and SINIT AC
module into available system memory. The system executive must validate and prepare the platform for the
measured launch. When the platform is properly configured, the system executive executes GETSEC[SENTER] on
the initiating logical processor (ILP) to rendezvous the responding logical processors into an SENTER sleep state,
the ILP then enters into using the SINIT AC module. In a multi-threaded or multi-processing environment, the
system executive must ensure that other logical processors are already in an idle loop, or asleep (such as after
executing HLT) before executing GETSEC[SENTER].

After the GETSEC[SENTER] rendezvous handshake is performed between all logical processors in the platform, the
ILP loads the chipset authenticated code module (SINIT) and performs an authentication check. If the check
passes, the processor hashes the SINIT AC module and stores the result into TPM PCR 17. It then switches execu-
tion context to the SINIT AC module. The SINIT AC module will perform a number of platform operations,
including: verifying the system configuration, protecting the system memory used by the MLE from I/O devices
capable of DMA, producing a hash of the MLE, storing the hash value in TPM PCR 18, and various other operations.
When SINIT completes execution, it executes the GETSEC[EXITAC] instruction and transfers control the MLE at the
designated entry point.

Upon receiving control from the SINIT AC module, the MLE must establish its protection and isolation controls
before enabling DMA and interrupts and transferring control to other software modules. It must also wake up the
RLPs from their SENTER sleep state using the GETSEC[WAKEUP] instruction and bring them into its protection and
isolation environment.

While executing in a measured environment, the MVMM can access the Trusted Platform Module (TPM) in locality 2.
The MVMM has complete access to all TPM commands and may use the TPM to report current measurement values
or use the measurement values to protect information such that only when the platform configuration registers
(PCRs) contain the same value is the information released from the TPM. This protection mechanism is known as
sealing.

A measured environment shutdown is ultimately completed by executing GETSEC[SEXIT]. Prior to this step system
software is responsible for scrubbing sensitive information left in the processor caches, system memory.

7.3 GETSEC LEAF FUNCTIONS
This section provides detailed descriptions of each leaf function of the GETSEC instruction. GETSEC is available only
if CPUID.01H:ECX[Bit 6] = 1. This indicates the availability of SMX and the GETSEC instruction. Before GETSEC can
be executed, SMX must be enabled by setting CR4.SMXE[Bit 14] = 1.

A GETSEC leaf can only be used if it is shown to be available as reported by the GETSEC[CAPABILITIES] function.
Attempts to access a GETSEC leaf index not supported by the processor, or if CR4.SMXE is 0, results in the signaling
of an undefined opcode exception.

All GETSEC leaf functions are available in protected mode, including the compatibility sub-mode of IA-32e mode
and the 64-bit sub-mode of IA-32e mode. Unless otherwise noted, the behavior of all GETSEC functions and inter-
actions related to the measured environment are independent of IA-32e mode. This also applies to the interpreta-
tion of register widths1 passed as input parameters to GETSEC functions and to register results returned as output
parameters.

1. This chapter uses the 64-bit notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because processors that support SMX also
support Intel 64 Architecture. The MVMM can be launched in IA-32e mode or outside IA-32e mode. The 64-bit notation of processor
registers also refer to its 32-bit forms if SMX is used in 32-bit environment. In some places, notation such as EAX is used to refer
specifically to lower 32 bits of the indicated register.

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-6

The GETSEC functions ENTERACCS, SENTER, SEXIT, and WAKEUP require a Intel® TXT capable-chipset to be
present in the platform. The GETSEC[CAPABILITIES] returned bit vector in position 0 indicates an Intel® TXT-
capable chipset has been sampled present1 by the processor.

The processor's operating mode also affects the execution of the following GETSEC leaf functions: SMCTRL, ENTER-
ACCS, EXITAC, SENTER, SEXIT, and WAKEUP. These functions are only allowed in protected mode at CPL = 0. They
are not allowed while in SMM in order to prevent potential intra-mode conflicts. Further execution qualifications
exist to prevent potential architectural conflicts (for example: nesting of the measured environment or authenti-
cated code execution mode). See the definitions of the GETSEC leaf functions for specific requirements.

For the purpose of performance monitor counting, the execution of GETSEC functions is counted as a single instruc-
tion with respect to retired instructions. The response by a responding logical processor (RLP) to messages associ-
ated with GETSEC[SENTER] or GTSEC[SEXIT] is transparent to the retired instruction count on the ILP.

1. Sampled present means that the processor sent a message to the chipset and the chipset responded that it (a) knows about the
message and (b) is capable of executing SENTER. This means that the chipset CAN support Intel® TXT, and is configured and WILLING
to support it.

GETSEC[CAPABILITIES]—Report the SMX Capabilities

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-7

GETSEC[CAPABILITIES]—Report the SMX Capabilities

Description

The GETSEC[CAPABILITIES] function returns a bit vector of supported GETSEC leaf functions. The CAPABILITIES
leaf of GETSEC is selected with EAX set to 0 at entry. EBX is used as the selector for returning the bit vector field in
EAX. GETSEC[CAPABILITIES] may be executed at all privilege levels, but the CR4.SMXE bit must be set or an unde-
fined opcode exception (#UD) is returned.

With EBX = 0 upon execution of GETSEC[CAPABILITIES], EAX returns the a bit vector representing status on the
presence of a Intel® TXT-capable chipset and the first 30 available GETSEC leaf functions. The format of the
returned bit vector is provided in Table 7-3.

If bit 0 is set to 1, then an Intel® TXT-capable chipset has been sampled present by the processor. If bits in the range
of 1-30 are set, then the corresponding GETSEC leaf function is available. If the bit value at a given bit index is 0,
then the GETSEC leaf function corresponding to that index is unsupported and attempted execution results in a
#UD.

Bit 31 of EAX indicates if further leaf indexes are supported. If the Extended Leafs bit 31 is set, then additional leaf
functions are accessed by repeating GETSEC[CAPABILITIES] with EBX incremented by one. When the most signifi-
cant bit of EAX is not set, then additional GETSEC leaf functions are not supported; indexing EBX to a higher value
results in EAX returning zero.

Opcode Instruction Description

NP 0F 37

(EAX = 0)

GETSEC[CAPABILITIES] Report the SMX capabilities.

The capabilities index is input in EBX with the result returned in EAX.

Table 7-3. GETSEC Capability Result Encoding (EBX = 0)

Field Bit position Description

Chipset Present 0 Intel® TXT-capable chipset is present.

Undefined 1 Reserved

ENTERACCS 2 GETSEC[ENTERACCS] is available.

EXITAC 3 GETSEC[EXITAC] is available.

SENTER 4 GETSEC[SENTER] is available.

SEXIT 5 GETSEC[SEXIT] is available.

PARAMETERS 6 GETSEC[PARAMETERS] is available.

SMCTRL 7 GETSEC[SMCTRL] is available.

WAKEUP 8 GETSEC[WAKEUP] is available.

Undefined 30:9 Reserved

Extended Leafs 31 Reserved for extended information reporting of GETSEC capabilities.

GETSEC[CAPABILITIES]—Report the SMX Capabilities

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-8

Operation

IF (CR4.SMXE=0)
THEN #UD;

ELSIF (in VMX non-root operation)
THEN VM Exit (reason=”GETSEC instruction”);

IF (EBX=0) THEN
BitVector := 0;
IF (TXT chipset present)

BitVector[Chipset present] := 1;
IF (ENTERACCS Available)

THEN BitVector[ENTERACCS] := 1;
IF (EXITAC Available)

THEN BitVector[EXITAC] := 1;
IF (SENTER Available)

THEN BitVector[SENTER] := 1;
IF (SEXIT Available)

THEN BitVector[SEXIT] := 1;
IF (PARAMETERS Available)

THEN BitVector[PARAMETERS] := 1;
IF (SMCTRL Available)

THEN BitVector[SMCTRL] := 1;
IF (WAKEUP Available)

THEN BitVector[WAKEUP] := 1;
EAX := BitVector;

ELSE
EAX := 0;

END;;

Flags Affected
None.

Use of Prefixes
LOCK Causes #UD.
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).
Operand size Causes #UD.
NP 66/F2/F3 prefixes are not allowed.
Segment overrides Ignored.
Address size Ignored.
REX Ignored.

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

Compatibility Mode Exceptions
#UD If CR4.SMXE = 0.

GETSEC[CAPABILITIES]—Report the SMX Capabilities

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-9

64-Bit Mode Exceptions
#UD If CR4.SMXE = 0.

VM-exit Condition
Reason (GETSEC) If in VMX non-root operation.

GETSEC[ENTERACCS]—Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-10

GETSEC[ENTERACCS]—Execute Authenticated Chipset Code

Description

The GETSEC[ENTERACCS] function loads, authenticates, and executes an authenticated code module using an
Intel® TXT platform chipset's public key. The ENTERACCS leaf of GETSEC is selected with EAX set to 2 at entry.

There are certain restrictions enforced by the processor for the execution of the GETSEC[ENTERACCS] instruction:
• Execution is not allowed unless the processor is in protected mode or IA-32e mode with CPL = 0 and

EFLAGS.VM = 0.
• Processor cache must be available and not disabled, that is, CR0.CD and CR0.NW bits must be 0.
• For processor packages containing more than one logical processor, CR0.CD is checked to ensure consistency

between enabled logical processors.
• For enforcing consistency of operation with numeric exception reporting using Interrupt 16, CR0.NE must be

set.
• An Intel TXT-capable chipset must be present as communicated to the processor by sampling of the power-on

configuration capability field after reset.
• The processor can not already be in authenticated code execution mode as launched by a previous

GETSEC[ENTERACCS] or GETSEC[SENTER] instruction without a subsequent exiting using GETSEC[EXITAC]).
• To avoid potential operability conflicts between modes, the processor is not allowed to execute this instruction

if it currently is in SMM or VMX operation.
• To ensure consistent handling of SIPI messages, the processor executing the GETSEC[ENTERACCS] instruction

must also be designated the BSP (boot-strap processor) as defined by IA32_APIC_BASE.BSP (Bit 8).

Failure to conform to the above conditions results in the processor signaling a general protection exception.

Prior to execution of the ENTERACCS leaf, other logical processors, i.e., RLPs, in the platform must be:
• Idle in a wait-for-SIPI state (as initiated by an INIT assertion or through reset for non-BSP designated

processors), or
• In the SENTER sleep state as initiated by a GETSEC[SENTER] from the initiating logical processor (ILP).

If other logical processor(s) in the same package are not idle in one of these states, execution of ENTERACCS
signals a general protection exception. The same requirement and action applies if the other logical processor(s) of
the same package do not have CR0.CD = 0.

A successful execution of ENTERACCS results in the ILP entering an authenticated code execution mode. Prior to
reaching this point, the processor performs several checks. These include:
• Establish and check the location and size of the specified authenticated code module to be executed by the

processor.
• Inhibit the ILP’s response to the external events: INIT, A20M, NMI, and SMI.
• Broadcast a message to enable protection of memory and I/O from other processor agents.
• Load the designated code module into an authenticated code execution area.
• Isolate the contents of the authenticated code execution area from further state modification by external

agents.
• Authenticate the authenticated code module.
• Initialize the initiating logical processor state based on information contained in the authenticated code module

header.
• Unlock the Intel® TXT-capable chipset private configuration space and TPM locality 3 space.

Opcode Instruction Description

NP 0F 37

(EAX = 2)

GETSEC[ENTERACCS] Enter authenticated code execution mode.

EBX holds the authenticated code module physical base address. ECX holds the authenticated
code module size (bytes).

GETSEC[ENTERACCS]—Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-11

• Begin execution in the authenticated code module at the defined entry point.

The GETSEC[ENTERACCS] function requires two additional input parameters in the general purpose registers EBX
and ECX. EBX holds the authenticated code (AC) module physical base address (the AC module must reside below
4 GBytes in physical address space) and ECX holds the AC module size (in bytes). The physical base address and
size are used to retrieve the code module from system memory and load it into the internal authenticated code
execution area. The base physical address is checked to verify it is on a modulo-4096 byte boundary. The size is
verified to be a multiple of 64, that it does not exceed the internal authenticated code execution area capacity (as
reported by GETSEC[CAPABILITIES]), and that the top address of the AC module does not exceed 32 bits. An error
condition results in an abort of the authenticated code execution launch and the signaling of a general protection
exception.

As an integrity check for proper processor hardware operation, execution of GETSEC[ENTERACCS] will also check
the contents of all the machine check status registers (as reported by the MSRs IA32_MCi_STATUS) for any valid
uncorrectable error condition. In addition, the global machine check status register IA32_MCG_STATUS MCIP bit
must be cleared and the IERR processor package pin (or its equivalent) must not be asserted, indicating that no
machine check exception processing is currently in progress. These checks are performed prior to initiating the
load of the authenticated code module. Any outstanding valid uncorrectable machine check error condition present
in these status registers at this point will result in the processor signaling a general protection violation.

The ILP masks the response to the assertion of the external signals INIT#, A20M, NMI#, and SMI#. This masking
remains active until optionally unmasked by GETSEC[EXITAC] (this defined unmasking behavior assumes
GETSEC[ENTERACCS] was not executed by a prior GETSEC[SENTER]). The purpose of this masking control is to
prevent exposure to existing external event handlers that may not be under the control of the authenticated code
module.

The ILP sets an internal flag to indicate it has entered authenticated code execution mode. The state of the A20M
pin is likewise masked and forced internally to a de-asserted state so that any external assertion is not recognized
during authenticated code execution mode.

To prevent other (logical) processors from interfering with the ILP operating in authenticated code execution mode,
memory (excluding implicit write-back transactions) access and I/O originating from other processor agents are
blocked. This protection starts when the ILP enters into authenticated code execution mode. Only memory and I/O
transactions initiated from the ILP are allowed to proceed. Exiting authenticated code execution mode is done by
executing GETSEC[EXITAC]. The protection of memory and I/O activities remains in effect until the ILP executes
GETSEC[EXITAC].

Prior to launching the authenticated execution module using GETSEC[ENTERACCS] or GETSEC[SENTER], the
processor’s MTRRs (Memory Type Range Registers) must first be initialized to map out the authenticated RAM
addresses as WB (writeback). Failure to do so may affect the ability for the processor to maintain isolation of the
loaded authenticated code module. If the processor detected this requirement is not met, it will signal an Intel®
TXT reset condition with an error code during the loading of the authenticated code module.

While physical addresses within the load module must be mapped as WB, the memory type for locations outside of
the module boundaries must be mapped to one of the supported memory types as returned by GETSEC[PARAME-
TERS] (or UC as default).

To conform to the minimum granularity of MTRR MSRs for specifying the memory type, authenticated code RAM
(ACRAM) is allocated to the processor in 4096 byte granular blocks. If an AC module size as specified in ECX is not
a multiple of 4096 then the processor will allocate up to the next 4096 byte boundary for mapping as ACRAM with
indeterminate data. This pad area will not be visible to the authenticated code module as external memory nor can
it depend on the value of the data used to fill the pad area.

At the successful completion of GETSEC[ENTERACCS], the architectural state of the processor is partially initialized
from contents held in the header of the authenticated code module. The processor GDTR, CS, and DS selectors are
initialized from fields within the authenticated code module. Since the authenticated code module must be relocat-
able, all address references must be relative to the authenticated code module base address in EBX. The processor
GDTR base value is initialized to the AC module header field GDTBasePtr + module base address held in EBX and
the GDTR limit is set to the value in the GDTLimit field. The CS selector is initialized to the AC module header
SegSel field, while the DS selector is initialized to CS + 8. The segment descriptor fields are implicitly initialized to
BASE=0, LIMIT=FFFFFh, G=1, D=1, P=1, S=1, read/write access for DS, and execute/read access for CS. The
processor begins the authenticated code module execution with the EIP set to the AC module header EntryPoint
field + module base address (EBX). The AC module based fields used for initializing the processor state are checked
for consistency and any failure results in a shutdown condition.

GETSEC[ENTERACCS]—Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-12

A summary of the register state initialization after successful completion of GETSEC[ENTERACCS] is given for the
processor in Table 7-4. The paging is disabled upon entry into authenticated code execution mode. The authenti-
cated code module is loaded and initially executed using physical addresses. It is up to the system software after
execution of GETSEC[ENTERACCS] to establish a new (or restore its previous) paging environment with an appro-
priate mapping to meet new protection requirements. EBP is initialized to the authenticated code module base
physical address for initial execution in the authenticated environment. As a result, the authenticated code can
reference EBP for relative address based references, given that the authenticated code module must be position
independent.

The segmentation related processor state that has not been initialized by GETSEC[ENTERACCS] requires appro-
priate initialization before use. Since a new GDT context has been established, the previous state of the segment
selector values held in ES, SS, FS, GS, TR, and LDTR might not be valid.

The MSR IA32_EFER is also unconditionally cleared as part of the processor state initialized by ENTERACCS. Since
paging is disabled upon entering authenticated code execution mode, a new paging environment will have to be
reestablished in order to establish IA-32e mode while operating in authenticated code execution mode.

Debug exception and trap related signaling is also disabled as part of GETSEC[ENTERACCS]. This is achieved by
resetting DR7, TF in EFLAGs, and the MSR IA32_DEBUGCTL. These debug functions are free to be re-enabled once
supporting exception handler(s), descriptor tables, and debug registers have been properly initialized following
entry into authenticated code execution mode. Also, any pending single-step trap condition will have been cleared
upon entry into this mode.

Table 7-4. Register State Initialization After GETSEC[ENTERACCS]

Register State Initialization Status Comment

CR0 PG←0, AM←0, WP←0: Others unchanged Paging, Alignment Check, Write-protection are
disabled.

CR4 MCE←0, CET←0, PCIDE←0: Others unchanged Machine Check Exceptions, Control-flow
Enforcement Technology, and Process-context
Identifiers disabled.

EFLAGS 00000002H

IA32_EFER 0H IA-32e mode disabled.

EIP AC.base + EntryPoint AC.base is in EBX as input to GETSEC[ENTERACCS].

[E|R]BX Pre-ENTERACCS state: Next [E|R]IP prior to
GETSEC[ENTERACCS]

Carry forward 64-bit processor state across
GETSEC[ENTERACCS].

ECX Pre-ENTERACCS state: [31:16]=GDTR.limit;
[15:0]=CS.sel

Carry forward processor state across
GETSEC[ENTERACCS].

[E|R]DX Pre-ENTERACCS state:
GDTR base

Carry forward 64-bit processor state across
GETSEC[ENTERACCS].

EBP AC.base

CS Sel=[SegSel], base=0, limit=FFFFFh, G=1, D=1, AR=9BH

DS Sel=[SegSel] +8, base=0, limit=FFFFFh, G=1, D=1,
AR=93H

GDTR Base= AC.base (EBX) + [GDTBasePtr], Limit=[GDTLimit]

DR7 00000400H

IA32_DEBUGCTL 0H

IA32_MISC_ENABLE See Table 7-5 for example. The number of initialized fields may change due to
processor implementation.

Performance
counters and counter
control registers

0H

GETSEC[ENTERACCS]—Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-13

Performance related counters and counter control registers are cleared as part of execution of ENTERACCS. This
implies any active performance counters at any time of ENTERACCS execution will be disabled. To reactive the
processor performance counters, this state must be re-initialized and re-enabled.

The IA32_MISC_ENABLE MSR is initialized upon entry into authenticated execution mode. Certain bits of this MSR
are preserved because preserving these bits may be important to maintain previously established platform settings
(See the footnote for Table 7-5.). The remaining bits are cleared for the purpose of establishing a more consistent
environment for the execution of authenticated code modules. One of the impacts of initializing this MSR is any
previous condition established by the MONITOR instruction will be cleared.

To support the possible return to the processor architectural state prior to execution of GETSEC[ENTERACCS],
certain critical processor state is captured and stored in the general- purpose registers at instruction completion.
[E|R]BX holds effective address ([E|R]IP) of the instruction that would execute next after GETSEC[ENTERACCS],
ECX[15:0] holds the CS selector value, ECX[31:16] holds the GDTR limit field, and [E|R]DX holds the GDTR base
field. The subsequent authenticated code can preserve the contents of these registers so that this state can be
manually restored if needed, prior to exiting authenticated code execution mode with GETSEC[EXITAC]. For the
processor state after exiting authenticated code execution mode, see the description of GETSEC[SEXIT].

The IDTR will also require reloading with a new IDT context after entering authenticated code execution mode,
before any exceptions or the external interrupts INTR and NMI can be handled. Since external interrupts are re-
enabled at the completion of authenticated code execution mode (as terminated with EXITAC), it is recommended
that a new IDT context be established before this point. Until such a new IDT context is established, the
programmer must take care in not executing an INT n instruction or any other operation that would result in an
exception or trap signaling.

Prior to completion of the GETSEC[ENTERACCS] instruction and after successful authentication of the AC module,
the private configuration space of the Intel TXT chipset is unlocked. The authenticated code module alone can gain
access to this normally restricted chipset state for the purpose of securing the platform.

Once the authenticated code module is launched at the completion of GETSEC[ENTERACCS], it is free to enable
interrupts by setting EFLAGS.IF and enable NMI by execution of IRET. This presumes that it has re-established
interrupt handling support through initialization of the IDT, GDT, and corresponding interrupt handling code.

Table 7-5. IA32_MISC_ENABLE MSR Initialization1 by ENTERACCS and SENTER

NOTES:
1. The number of IA32_MISC_ENABLE fields that are initialized may vary due to processor implementations.

Field Bit position Description

Fast strings enable 0 Clear to 0.

FOPCODE compatibility mode
enable

2 Clear to 0.

Thermal monitor enable 3 Set to 1 if other thermal monitor capability is not enabled.2

2. ENTERACCS (and SENTER) initialize the state of processor thermal throttling such that at least a minimum level is enabled. If thermal
throttling is already enabled when executing one of these GETSEC leaves, then no change in the thermal throttling control settings
will occur. If thermal throttling is disabled, then it will be enabled via setting of the thermal throttle control bit 3 as a result of execut-
ing these GETSEC leaves.

Split-lock disable 4 Clear to 0.

Bus lock on cache line splits
disable

8 Clear to 0.

Hardware prefetch disable 9 Clear to 0.

GV1/2 legacy enable 15 Clear to 0.

MONITOR/MWAIT s/m enable 18 Clear to 0.

Adjacent sector prefetch disable 19 Clear to 0.

GETSEC[ENTERACCS]—Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-14

Operation in a Uni-Processor Platform

(* The state of the internal flag ACMODEFLAG persists across instruction boundary *)
IF (CR4.SMXE=0)

THEN #UD;
ELSIF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSIF (GETSEC leaf unsupported)

THEN #UD;
ELSIF ((in VMX operation) or

(CR0.PE=0) or (CR0.CD=1) or (CR0.NW=1) or (CR0.NE=0) or
(CPL>0) or (EFLAGS.VM=1) or
(IA32_APIC_BASE.BSP=0) or
(TXT chipset not present) or
(ACMODEFLAG=1) or (IN_SMM=1))

THEN #GP(0);
IF (GETSEC[PARAMETERS].Parameter_Type = 5, MCA_Handling (bit 6) = 0)

FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO
IF (IA32_MC[I]_STATUS = uncorrectable error)

THEN #GP(0);
OD;

FI;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN #GP(0);
ACBASE := EBX;
ACSIZE := ECX;
IF (((ACBASE MOD 4096) ≠ 0) or ((ACSIZE MOD 64) ≠ 0) or (ACSIZE < minimum module size) OR (ACSIZE > authenticated RAM
capacity)) or ((ACBASE+ACSIZE) > (2^32 -1)))

THEN #GP(0);
IF (secondary thread(s) CR0.CD = 1) or ((secondary thread(s) NOT(wait-for-SIPI)) and

(secondary thread(s) not in SENTER sleep state)
THEN #GP(0);

Mask SMI, INIT, A20M, and NMI external pin events;
IA32_MISC_ENABLE := (IA32_MISC_ENABLE & MASK_CONST*)
(* The hexadecimal value of MASK_CONST may vary due to processor implementations *)
A20M := 0;
IA32_DEBUGCTL := 0;
Invalidate processor TLB(s);
Drain Outgoing Transactions;
ACMODEFLAG := 1;
SignalTXTMessage(ProcessorHold);
Load the internal ACRAM based on the AC module size;
(* Ensure that all ACRAM loads hit Write Back memory space *)
IF (ACRAM memory type ≠ WB)

THEN TXT-SHUTDOWN(#BadACMMType);
IF (AC module header version isnot supported) OR (ACRAM[ModuleType] ≠ 2)

THEN TXT-SHUTDOWN(#UnsupportedACM);
 (* Authenticate the AC Module and shutdown with an error if it fails *)
KEY := GETKEY(ACRAM, ACBASE);
KEYHASH := HASH(KEY);
CSKEYHASH := READ(TXT.PUBLIC.KEY);
IF (KEYHASH ≠ CSKEYHASH)

THEN TXT-SHUTDOWN(#AuthenticateFail);
SIGNATURE := DECRYPT(ACRAM, ACBASE, KEY);
(* The value of SIGNATURE_LEN_CONST is implementation-specific*)

GETSEC[ENTERACCS]—Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-15

FOR I=0 to SIGNATURE_LEN_CONST - 1 DO
ACRAM[SCRATCH.I] := SIGNATURE[I];

COMPUTEDSIGNATURE := HASH(ACRAM, ACBASE, ACSIZE);
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.SIGNATURE_LEN_CONST+I] := COMPUTEDSIGNATURE[I];
IF (SIGNATURE ≠ COMPUTEDSIGNATURE)

THEN TXT-SHUTDOWN(#AuthenticateFail);
ACMCONTROL := ACRAM[CodeControl];
IF ((ACMCONTROL.0 = 0) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM load))

THEN TXT-SHUTDOWN(#UnexpectedHITM);
IF (ACMCONTROL reserved bits are set)

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[GDTBasePtr] < (ACRAM[HeaderLen] * 4 + Scratch_size)) OR

((ACRAM[GDTBasePtr] + ACRAM[GDTLimit]) >= ACSIZE))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACMCONTROL.0 = 1) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM load))
THEN ACEntryPoint := ACBASE+ACRAM[ErrorEntryPoint];

ELSE
ACEntryPoint := ACBASE+ACRAM[EntryPoint];

IF ((ACEntryPoint >= ACSIZE) OR (ACEntryPoint < (ACRAM[HeaderLen] * 4 + Scratch_size)))THEN TXT-SHUTDOWN(#BadACMFormat);
IF (ACRAM[GDTLimit] & FFFF0000h)

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[SegSel] > (ACRAM[GDTLimit] - 15)) OR (ACRAM[SegSel] < 8))

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[SegSel].TI=1) OR (ACRAM[SegSel].RPL≠0))

THEN TXT-SHUTDOWN(#BadACMFormat);
CR0.[PG.AM.WP] := 0;
CR4.MCE := 0;
EFLAGS := 00000002h;
IA32_EFER := 0h;
[E|R]BX := [E|R]IP of the instruction after GETSEC[ENTERACCS];
ECX := Pre-GETSEC[ENTERACCS] GDT.limit:CS.sel;
[E|R]DX := Pre-GETSEC[ENTERACCS] GDT.base;
EBP := ACBASE;
GDTR.BASE := ACBASE+ACRAM[GDTBasePtr];
GDTR.LIMIT := ACRAM[GDTLimit];
CS.SEL := ACRAM[SegSel];
CS.BASE := 0;
CS.LIMIT := FFFFFh;
CS.G := 1;
CS.D := 1;
CS.AR := 9Bh;
DS.SEL := ACRAM[SegSel]+8;
DS.BASE := 0;
DS.LIMIT := FFFFFh;
DS.G := 1;
DS.D := 1;
DS.AR := 93h;
DR7 := 00000400h;
IA32_DEBUGCTL := 0;
SignalTXTMsg(OpenPrivate);
SignalTXTMsg(OpenLocality3);
EIP := ACEntryPoint;
END;

GETSEC[ENTERACCS]—Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-16

Flags Affected
All flags are cleared.

Use of Prefixes
LOCK Causes #UD.
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).
Operand size Causes #UD.
NP 66/F2/F3 prefixes are not allowed.
Segment overrides Ignored.
Address size Ignored.
REX Ignored.

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) If CR0.CD = 1 or CR0.NW = 1 or CR0.NE = 0 or CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If a Intel® TXT-capable chipset is not present.
If in VMX root operation.
If the initiating processor is not designated as the bootstrap processor via the MSR bit
IA32_APIC_BASE.BSP.
If the processor is already in authenticated code execution mode.
If the processor is in SMM.
If a valid uncorrectable machine check error is logged in IA32_MC[I]_STATUS.
If the authenticated code base is not on a 4096 byte boundary.
If the authenticated code size > processor internal authenticated code area capacity.
If the authenticated code size is not modulo 64.
If other enabled logical processor(s) of the same package CR0.CD = 1.
If other enabled logical processor(s) of the same package are not in the wait-for-SIPI or
SENTER sleep state.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[ENTERACCS] is not recognized in real-address mode.

GETSEC[ENTERACCS]—Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-17

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[ENTERACCS] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.
#GP If AC code module does not reside in physical address below 2^32 -1.

64-Bit Mode Exceptions
All protected mode exceptions apply.
#GP If AC code module does not reside in physical address below 2^32 -1.

VM-exit Condition
Reason (GETSEC) If in VMX non-root operation.

GETSEC[EXITAC]—Exit Authenticated Code Execution Mode

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-18

GETSEC[EXITAC]—Exit Authenticated Code Execution Mode

Description

The GETSEC[EXITAC] leaf function exits the ILP out of authenticated code execution mode established by
GETSEC[ENTERACCS] or GETSEC[SENTER]. The EXITAC leaf of GETSEC is selected with EAX set to 3 at entry. EBX
(or RBX, if in 64-bit mode) holds the near jump target offset for where the processor execution resumes upon
exiting authenticated code execution mode. EDX contains additional parameter control information. Currently only
an input value of 0 in EDX is supported. All other EDX settings are considered reserved and result in a general
protection violation.

GETSEC[EXITAC] can only be executed if the processor is in protected mode with CPL = 0 and EFLAGS.VM = 0. The
processor must also be in authenticated code execution mode. To avoid potential operability conflicts between
modes, the processor is not allowed to execute this instruction if it is in SMM or in VMX operation. A violation of
these conditions results in a general protection violation.

Upon completion of the GETSEC[EXITAC] operation, the processor unmasks responses to external event signals
INIT#, NMI#, and SMI#. This unmasking is performed conditionally, based on whether the authenticated code
execution mode was entered via execution of GETSEC[SENTER] or GETSEC[ENTERACCS]. If the processor is in
authenticated code execution mode due to the execution of GETSEC[SENTER], then these external event signals
will remain masked. In this case, A20M is kept disabled in the measured environment until the measured environ-
ment executes GETSEC[SEXIT]. INIT# is unconditionally unmasked by EXITAC. Note that any events that are
pending, but have been blocked while in authenticated code execution mode, will be recognized at the completion
of the GETSEC[EXITAC] instruction if the pin event is unmasked.

The intent of providing the ability to optionally leave the pin events SMI#, and NMI# masked is to support the
completion of a measured environment bring-up that makes use of VMX. In this envisioned security usage
scenario, these events will remain masked until an appropriate virtual machine has been established in order to
field servicing of these events in a safer manner. Details on when and how events are masked and unmasked in
VMX operation are described in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C. It
should be cautioned that if no VMX environment is to be activated following GETSEC[EXITAC], that these events
will remain masked until the measured environment is exited with GETSEC[SEXIT]. If this is not desired then the
GETSEC function SMCTRL(0) can be used for unmasking SMI# in this context. NMI# can be correspondingly
unmasked by execution of IRET.

A successful exit of the authenticated code execution mode requires the ILP to perform additional steps as outlined
below:
• Invalidate the contents of the internal authenticated code execution area.
• Invalidate processor TLBs.
• Clear the internal processor AC Mode indicator flag.
• Re-lock the TPM locality 3 space.
• Unlock the Intel® TXT-capable chipset memory and I/O protections to allow memory and I/O activity by other

processor agents.
• Perform a near absolute indirect jump to the designated instruction location.

The content of the authenticated code execution area is invalidated by hardware in order to protect it from further
use or visibility. This internal processor storage area can no longer be used or relied upon after GETSEC[EXITAC].
Data structures need to be re-established outside of the authenticated code execution area if they are to be refer-
enced after EXITAC. Since addressed memory content formerly mapped to the authenticated code execution area
may no longer be coherent with external system memory after EXITAC, processor TLBs in support of linear to phys-
ical address translation are also invalidated.

Opcode Instruction Description

NP 0F 37

(EAX=3)

GETSEC[EXITAC] Exit authenticated code execution mode.

RBX holds the Near Absolute Indirect jump target and EDX hold the exit parameter flags.

GETSEC[EXITAC]—Exit Authenticated Code Execution Mode

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-19

Upon completion of GETSEC[EXITAC] a near absolute indirect transfer is performed with EIP loaded with the
contents of EBX (based on the current operating mode size). In 64-bit mode, all 64 bits of RBX are loaded into RIP
if REX.W precedes GETSEC[EXITAC]. Otherwise RBX is treated as 32 bits even while in 64-bit mode. Conventional
CS limit checking is performed as part of this control transfer. Any exception conditions generated as part of this
control transfer will be directed to the existing IDT; thus it is recommended that an IDTR should also be established
prior to execution of the EXITAC function if there is a need for fault handling. In addition, any segmentation related
(and paging) data structures to be used after EXITAC should be re-established or validated by the authenticated
code prior to EXITAC.

In addition, any segmentation related (and paging) data structures to be used after EXITAC need to be re-estab-
lished and mapped outside of the authenticated RAM designated area by the authenticated code prior to EXITAC.
Any data structure held within the authenticated RAM allocated area will no longer be accessible after completion
by EXITAC.

Operation

(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)
IF (CR4.SMXE=0)

THEN #UD;
ELSIF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSIF (GETSEC leaf unsupported)

THEN #UD;
ELSIF ((in VMX operation) or ((in 64-bit mode) and (RBX is non-canonical))

(CR0.PE=0) or (CPL>0) or (EFLAGS.VM=1) or
(ACMODEFLAG=0) or (IN_SMM=1)) or (EDX ≠ 0))
THEN #GP(0);

IF (OperandSize = 32)
THEN tempEIP := EBX;

ELSIF (OperandSize = 64)
THEN tempEIP := RBX;

ELSE
tempEIP := EBX AND 0000FFFFH;

IF (tempEIP > code segment limit)
THEN #GP(0);

Invalidate ACRAM contents;
Invalidate processor TLB(s);
Drain outgoing messages;
SignalTXTMsg(CloseLocality3);
SignalTXTMsg(LockSMRAM);
SignalTXTMsg(ProcessorRelease);
Unmask INIT;
IF (SENTERFLAG=0)

THEN Unmask SMI, INIT, NMI, and A20M pin event;
ELSEIF (IA32_SMM_MONITOR_CTL[0] = 0)

THEN Unmask SMI pin event;
ACMODEFLAG := 0;
IF IA32_EFER.LMA == 1

THEN CR3 := R8;
EIP := tempEIP;
END;

Flags Affected

None.

GETSEC[EXITAC]—Exit Authenticated Code Execution Mode

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-20

Use of Prefixes
LOCK Causes #UD.
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).
Operand size Causes #UD.
NP 66/F2/F3 prefixes are not allowed.
Segment overrides Ignored.
Address size Ignored.
REX.W Sets 64-bit mode Operand size attribute.

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[EXITAC] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) If CR0.PE = 0 or CPL>0 or EFLAGS.VM =1.

If in VMX root operation.
If the processor is not currently in authenticated code execution mode.
If the processor is in SMM.
If any reserved bit position is set in the EDX parameter register.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[EXITAC] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[EXITAC] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[EXITAC] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[EXITAC] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.
#GP(0) If the target address in RBX is not in a canonical form.

VM-Exit Condition
Reason (GETSEC) If in VMX non-root operation.

GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-21

GETSEC[SENTER]—Enter a Measured Environment

Description

The GETSEC[SENTER] instruction initiates the launch of a measured environment and places the initiating logical
processor (ILP) into the authenticated code execution mode. The SENTER leaf of GETSEC is selected with EAX set
to 4 at execution. The physical base address of the AC module to be loaded and authenticated is specified in EBX.
The size of the module in bytes is specified in ECX. EDX controls the level of functionality supported by the
measured environment launch. To enable the full functionality of the protected environment launch, EDX must be
initialized to zero.

The authenticated code base address and size parameters (in bytes) are passed to the GETSEC[SENTER] instruc-
tion using EBX and ECX respectively. The ILP evaluates the contents of these registers according to the rules for the
AC module address in GETSEC[ENTERACCS]. AC module execution follows the same rules, as set by
GETSEC[ENTERACCS].

The launching software must ensure that the TPM.ACCESS_0.activeLocality bit is clear before executing the
GETSEC[SENTER] instruction.

There are restrictions enforced by the processor for execution of the GETSEC[SENTER] instruction:
• Execution is not allowed unless the processor is in protected mode or IA-32e mode with CPL = 0 and

EFLAGS.VM = 0.
• Processor cache must be available and not disabled using the CR0.CD and NW bits.
• For enforcing consistency of operation with numeric exception reporting using Interrupt 16, CR0.NE must be

set.
• An Intel TXT-capable chipset must be present as communicated to the processor by sampling of the power-on

configuration capability field after reset.
• The processor can not be in authenticated code execution mode or already in a measured environment (as

launched by a previous GETSEC[ENTERACCS] or GETSEC[SENTER] instruction).
• To avoid potential operability conflicts between modes, the processor is not allowed to execute this instruction

if it currently is in SMM or VMX operation.
• To ensure consistent handling of SIPI messages, the processor executing the GETSEC[SENTER] instruction

must also be designated the BSP (boot-strap processor) as defined by IA32_APIC_BASE.BSP (Bit 8).
• EDX must be initialized to a setting supportable by the processor. Unless enumeration by the GETSEC[PARAM-

ETERS] leaf reports otherwise, only a value of zero is supported.

Failure to abide by the above conditions results in the processor signaling a general protection violation.

This instruction leaf starts the launch of a measured environment by initiating a rendezvous sequence for all logical
processors in the platform. The rendezvous sequence involves the initiating logical processor sending a message
(by executing GETSEC[SENTER]) and other responding logical processors (RLPs) acknowledging the message,
thus synchronizing the RLP(s) with the ILP.

In response to a message signaling the completion of rendezvous, RLPs clear the bootstrap processor indicator flag
(IA32_APIC_BASE.BSP) and enter an SENTER sleep state. In this sleep state, RLPs enter an idle processor condi-
tion while waiting to be activated after a measured environment has been established by the system executive.
RLPs in the SENTER sleep state can only be activated by the GETSEC leaf function WAKEUP in a measured environ-
ment.

Opcode Instruction Description

NP 0F 37

(EAX=4)

GETSEC[SENTER] Launch a measured environment.

EBX holds the SINIT authenticated code module physical base address.

ECX holds the SINIT authenticated code module size (bytes).

EDX controls the level of functionality supported by the measured environment launch.

GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-22

A successful launch of the measured environment results in the initiating logical processor entering the authenti-
cated code execution mode. Prior to reaching this point, the ILP performs the following steps internally:
• Inhibit processor response to the external events: INIT, A20M, NMI, and SMI.
• Establish and check the location and size of the authenticated code module to be executed by the ILP.
• Check for the existence of an Intel® TXT-capable chipset.
• Verify the current power management configuration is acceptable.
• Broadcast a message to enable protection of memory and I/O from activities from other processor agents.
• Load the designated AC module into authenticated code execution area.
• Isolate the content of authenticated code execution area from further state modification by external agents.
• Authenticate the AC module.
• Updated the Trusted Platform Module (TPM) with the authenticated code module's hash.
• Initialize processor state based on the authenticated code module header information.
• Unlock the Intel® TXT-capable chipset private configuration register space and TPM locality 3 space.
• Begin execution in the authenticated code module at the defined entry point.

As an integrity check for proper processor hardware operation, execution of GETSEC[SENTER] will also check the
contents of all the machine check status registers (as reported by the MSRs IA32_MCi_STATUS) for any valid
uncorrectable error condition. In addition, the global machine check status register IA32_MCG_STATUS MCIP bit
must be cleared and the IERR processor package pin (or its equivalent) must be not asserted, indicating that no
machine check exception processing is currently in-progress. These checks are performed twice: once by the ILP
prior to the broadcast of the rendezvous message to RLPs, and later in response to RLPs acknowledging the
rendezvous message. Any outstanding valid uncorrectable machine check error condition present in the machine
check status registers at the first check point will result in the ILP signaling a general protection violation. If an
outstanding valid uncorrectable machine check error condition is present at the second check point, then this will
result in the corresponding logical processor signaling the more severe TXT-shutdown condition with an error code
of 12.

Before loading and authentication of the target code module is performed, the processor also checks that the
current voltage and bus ratio encodings correspond to known good values supportable by the processor. The MSR
IA32_PERF_STATUS values are compared against either the processor supported maximum operating target
setting, system reset setting, or the thermal monitor operating target. If the current settings do not meet any of
these criteria then the SENTER function will attempt to change the voltage and bus ratio select controls in a
processor-specific manner. This adjustment may be to the thermal monitor, minimum (if different), or maximum
operating target depending on the processor.

This implies that some thermal operating target parameters configured by BIOS may be overridden by SENTER.
The measured environment software may need to take responsibility for restoring such settings that are deemed
to be safe, but not necessarily recognized by SENTER. If an adjustment is not possible when an out of range setting
is discovered, then the processor will abort the measured launch. This may be the case for chipset controlled
settings of these values or if the controllability is not enabled on the processor. In this case it is the responsibility
of the external software to program the chipset voltage ID and/or bus ratio select settings to known good values
recognized by the processor, prior to executing SENTER.

NOTE
For a mobile processor, an adjustment can be made according to the thermal monitor operating
target. For a quad-core processor the SENTER adjustment mechanism may result in a more conser-
vative but non-uniform voltage setting, depending on the pre-SENTER settings per core.

The ILP and RLPs mask the response to the assertion of the external signals INIT#, A20M, NMI#, and SMI#. The
purpose of this masking control is to prevent exposure to existing external event handlers until a protected handler
has been put in place to directly handle these events. Masked external pin events may be unmasked conditionally
or unconditionally via the GETSEC[EXITAC], GETSEC[SEXIT], GETSEC[SMCTRL] or for specific VMX related opera-
tions such as a VM entry or the VMXOFF instruction (see respective GETSEC leaves and Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more details). The state of the A20M pin is masked and
forced internally to a de-asserted state so that external assertion is not recognized. A20M masking as set by

GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-23

GETSEC[SENTER] is undone only after taking down the measured environment with the GETSEC[SEXIT] instruc-
tion or processor reset. INTR is masked by simply clearing the EFLAGS.IF bit. It is the responsibility of system soft-
ware to control the processor response to INTR through appropriate management of EFLAGS.

To prevent other (logical) processors from interfering with the ILP operating in authenticated code execution mode,
memory (excluding implicit write-back transactions) and I/O activities originating from other processor agents are
blocked. This protection starts when the ILP enters into authenticated code execution mode. Only memory and I/O
transactions initiated from the ILP are allowed to proceed. Exiting authenticated code execution mode is done by
executing GETSEC[EXITAC]. The protection of memory and I/O activities remains in effect until the ILP executes
GETSEC[EXITAC].

Once the authenticated code module has been loaded into the authenticated code execution area, it is protected
against further modification from external bus snoops. There is also a requirement that the memory type for the
authenticated code module address range be WB (via initialization of the MTRRs prior to execution of this instruc-
tion). If this condition is not satisfied, it is a violation of security and the processor will force a TXT system reset
(after writing an error code to the chipset LT.ERRORCODE register). This action is referred to as a Intel® TXT reset
condition. It is performed when it is considered unreliable to signal an error through the conventional exception
reporting mechanism.

To conform to the minimum granularity of MTRR MSRs for specifying the memory type, authenticated code RAM
(ACRAM) is allocated to the processor in 4096 byte granular blocks. If an AC module size as specified in ECX is not
a multiple of 4096 then the processor will allocate up to the next 4096 byte boundary for mapping as ACRAM with
indeterminate data. This pad area will not be visible to the authenticated code module as external memory nor can
it depend on the value of the data used to fill the pad area.

Once successful authentication has been completed by the ILP, the computed hash is stored in a trusted storage
facility in the platform. The following trusted storage facility are supported:
• If the platform register FTM_INTERFACE_ID.[bits 3:0] = 0, the computed hash is stored to the platform’s TPM

at PCR17 after this register is implicitly reset. PCR17 is a dedicated register for holding the computed hash of
the authenticated code module loaded and subsequently executed by the GETSEC[SENTER]. As part of this
process, the dynamic PCRs 18-22 are reset so they can be utilized by subsequently software for registration of
code and data modules.

• If the platform register FTM_INTERFACE_ID.[bits 3:0] = 1, the computed hash is stored in a firmware trusted
module (FTM) using a modified protocol similar to the protocol used to write to TPM’s PCR17.

After successful execution of SENTER, either PCR17 (if FTM is not enabled) or the FTM (if enabled) contains the
measurement of AC code and the SENTER launching parameters.

After authentication is completed successfully, the private configuration space of the Intel® TXT-capable chipset is
unlocked so that the authenticated code module and measured environment software can gain access to this
normally restricted chipset state. The Intel® TXT-capable chipset private configuration space can be locked later
by software writing to the chipset LT.CMD.CLOSE-PRIVATE register or unconditionally using the GETSEC[SEXIT]
instruction.

The SENTER leaf function also initializes some processor architecture state for the ILP from contents held in the
header of the authenticated code module. Since the authenticated code module is relocatable, all address refer-
ences are relative to the base address passed in via EBX. The ILP GDTR base value is initialized to EBX +
[GDTBasePtr] and GDTR limit set to [GDTLimit]. The CS selector is initialized to the value held in the AC module
header field SegSel, while the DS, SS, and ES selectors are initialized to CS+8. The segment descriptor fields are
initialized implicitly with BASE=0, LIMIT=FFFFFh, G=1, D=1, P=1, S=1, read/write/accessed for DS, SS, and ES,
while execute/read/accessed for CS. Execution in the authenticated code module for the ILP begins with the EIP set
to EBX + [EntryPoint]. AC module defined fields used for initializing processor state are consistency checked with
a failure resulting in an TXT-shutdown condition.

Table 7-6 provides a summary of processor state initialization for the ILP and RLP(s) after successful completion of
GETSEC[SENTER]. For both ILP and RLP(s), paging is disabled upon entry to the measured environment. It is up to
the ILP to establish a trusted paging environment, with appropriate mappings, to meet protection requirements
established during the launch of the measured environment. RLP state initialization is not completed until a subse-
quent wake-up has been signaled by execution of the GETSEC[WAKEUP] function by the ILP.

GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-24

Segmentation related processor state that has not been initialized by GETSEC[SENTER] requires appropriate
initialization before use. Since a new GDT context has been established, the previous state of the segment selector
values held in FS, GS, TR, and LDTR may no longer be valid. The IDTR will also require reloading with a new IDT
context after launching the measured environment before exceptions or the external interrupts INTR and NMI can
be handled. In the meantime, the programmer must take care in not executing an INT n instruction or any other
condition that would result in an exception or trap signaling.

Debug exception and trap related signaling is also disabled as part of execution of GETSEC[SENTER]. This is
achieved by clearing DR7, TF in EFLAGs, and the MSR IA32_DEBUGCTL as defined in Table 7-6. These can be re-
enabled once supporting exception handler(s), descriptor tables, and debug registers have been properly re-initial-
ized following SENTER. Also, any pending single-step trap condition will be cleared at the completion of SENTER for
both the ILP and RLP(s).

Performance related counters and counter control registers are cleared as part of execution of SENTER on both the
ILP and RLP. This implies any active performance counters at the time of SENTER execution will be disabled. To
reactive the processor performance counters, this state must be re-initialized and re-enabled.

Since MCE along with all other state bits (with the exception of SMXE) are cleared in CR4 upon execution of SENTER
processing, any enabled machine check error condition that occurs will result in the processor performing the TXT-
shutdown action. This also applies to an RLP while in the SENTER sleep state. For each logical processor CR4.MCE
must be reestablished with a valid machine check exception handler to otherwise avoid an TXT-shutdown under
such conditions.

Table 7-6. Register State Initialization After GETSEC[SENTER] and GETSEC[WAKEUP]

Register State ILP after GETSEC[SENTER] RLP after GETSEC[WAKEUP]

CR0 PG←0, AM←0, WP←0; Others unchanged PG←0, CD←0, NW←0, AM←0, WP←0; PE←1, NE←1

CR4 00004000H 00004000H

EFLAGS 00000002H 00000002H

IA32_EFER 0H 0

EIP [EntryPoint from MLE header1]

NOTES:
1. See the Intel® Trusted Execution Technology Measured Launched Environment Programming Guide for MLE header format.

[LT.MLE.JOIN + 12]

EBX Unchanged [SINIT.BASE] Unchanged

EDX SENTER control flags Unchanged

EBP SINIT.BASE Unchanged

CS Sel=[SINIT SegSel], base=0, limit=FFFFFh, G=1,
D=1, AR=9BH

Sel = [LT.MLE.JOIN + 8], base = 0, limit = FFFFFH, G =
1, D = 1, AR = 9BH

DS, ES, SS Sel=[SINIT SegSel] +8, base=0, limit=FFFFFh, G=1,
D=1, AR=93H

Sel = [LT.MLE.JOIN + 8] +8, base = 0, limit = FFFFFH, G
= 1, D = 1, AR = 93H

GDTR Base= SINIT.base (EBX) + [SINIT.GDTBasePtr],
Limit=[SINIT.GDTLimit]

Base = [LT.MLE.JOIN + 4], Limit = [LT.MLE.JOIN]

DR7 00000400H 00000400H

IA32_DEBUGCTL 0H 0H

Performance counters
and counter control
registers

0H 0H

IA32_MISC_ENABLE See Table 7-5 See Table 7-5

IA32_SMM_MONITOR_
CTL

Bit 2←0 Bit 2←0

GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-25

The MSR IA32_EFER is also unconditionally cleared as part of the processor state initialized by SENTER for both the
ILP and RLP. Since paging is disabled upon entering authenticated code execution mode, a new paging environ-
ment will have to be re-established if it is desired to enable IA-32e mode while operating in authenticated code
execution mode.

The miscellaneous feature control MSR, IA32_MISC_ENABLE, is initialized as part of the measured environment
launch. Certain bits of this MSR are preserved because preserving these bits may be important to maintain previ-
ously established platform settings. See the footnote for Table 7-5 The remaining bits are cleared for the purpose
of establishing a more consistent environment for the execution of authenticated code modules. Among the impact
of initializing this MSR, any previous condition established by the MONITOR instruction will be cleared.

Effect of MSR IA32_FEATURE_CONTROL MSR

Bits 15:8 of the IA32_FEATURE_CONTROL MSR affect the execution of GETSEC[SENTER]. These bits consist of two
fields:
• Bit 15: a global enable control for execution of SENTER.
• Bits 14:8: a parameter control field providing the ability to qualify SENTER execution based on the level of

functionality specified with corresponding EDX parameter bits 6:0.

The layout of these fields in the IA32_FEATURE_CONTROL MSR is shown in Table 7-1.

Prior to the execution of GETSEC[SENTER], the lock bit of IA32_FEATURE_CONTROL MSR must be bit set to affirm
the settings to be used. Once the lock bit is set, only a power-up reset condition will clear this MSR. The IA32_FEA-
TURE_CONTROL MSR must be configured in accordance to the intended usage at platform initialization. Note that
this MSR is only available on SMX or VMX enabled processors. Otherwise, IA32_FEATURE_CONTROL is treated as
reserved.

The Intel® Trusted Execution Technology Measured Launched Environment Programming Guide provides addi-
tional details and requirements for programming measured environment software to launch in an Intel TXT plat-
form.

Operation in a Uni-Processor Platform

(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)

GETSEC[SENTER] (ILP Only):
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
ELSE IF ((in VMX root operation) or

(CR0.PE=0) or (CR0.CD=1) or (CR0.NW=1) or (CR0.NE=0) or
(CPL>0) or (EFLAGS.VM=1) or
(IA32_APIC_BASE.BSP=0) or (TXT chipset not present) or
(SENTERFLAG=1) or (ACMODEFLAG=1) or (IN_SMM=1) or
(TPM interface is not present) or
(EDX ≠ (SENTER_EDX_support_mask & EDX)) or
(IA32_FEATURE_CONTROL[0]=0) or (IA32_FEATURE_CONTROL[15]=0) or
((IA32_FEATURE_CONTROL[14:8] & EDX[6:0]) ≠ EDX[6:0]))

THEN #GP(0);
IF (GETSEC[PARAMETERS].Parameter_Type = 5, MCA_Handling (bit 6) = 0)

FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO
IF IA32_MC[I]_STATUS = uncorrectable error

THEN #GP(0);
FI;

OD;
FI;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-26

THEN #GP(0);
ACBASE := EBX;
ACSIZE := ECX;
IF (((ACBASE MOD 4096) ≠ 0) or ((ACSIZE MOD 64) ≠ 0) or (ACSIZE < minimum

module size) or (ACSIZE > AC RAM capacity) or ((ACBASE+ACSIZE) > (2^32 -1)))
THEN #GP(0);

Mask SMI, INIT, A20M, and NMI external pin events;
SignalTXTMsg(SENTER);
DO
WHILE (no SignalSENTER message);

TXT_SENTER__MSG_EVENT (ILP & RLP):
Mask and clear SignalSENTER event;
Unmask SignalSEXIT event;
IF (in VMX operation)

THEN TXT-SHUTDOWN(#IllegalEvent);
FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO

IF IA32_MC[I]_STATUS = uncorrectable error
THEN TXT-SHUTDOWN(#UnrecovMCError);

FI;
OD;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN TXT-SHUTDOWN(#UnrecovMCError);
IF (Voltage or bus ratio status are NOT at a known good state)

THEN IF (Voltage select and bus ratio are internally adjustable)
THEN

Make product-specific adjustment on operating parameters;
ELSE

TXT-SHUTDOWN(#IIlegalVIDBRatio);
FI;

IA32_MISC_ENABLE := (IA32_MISC_ENABLE & MASK_CONST*)
(* The hexadecimal value of MASK_CONST may vary due to processor implementations *)
A20M := 0;
IA32_DEBUGCTL := 0;
Invalidate processor TLB(s);
Drain outgoing transactions;
Clear performance monitor counters and control;
SENTERFLAG := 1;
SignalTXTMsg(SENTERAck);
IF (logical processor is not ILP)

THEN GOTO RLP_SENTER_ROUTINE;
(* ILP waits for all logical processors to ACK *)
DO

DONE := TXT.READ(LT.STS);
WHILE (not DONE);
SignalTXTMsg(SENTERContinue);
SignalTXTMsg(ProcessorHold);
FOR I=ACBASE to ACBASE+ACSIZE-1 DO

ACRAM[I-ACBASE].ADDR := I;
ACRAM[I-ACBASE].DATA := LOAD(I);

OD;
IF (ACRAM memory type ≠ WB)

THEN TXT-SHUTDOWN(#BadACMMType);

GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-27

IF (AC module header version is not supported) OR (ACRAM[ModuleType] ≠ 2)
THEN TXT-SHUTDOWN(#UnsupportedACM);

KEY := GETKEY(ACRAM, ACBASE);
KEYHASH := HASH(KEY);
CSKEYHASH := LT.READ(LT.PUBLIC.KEY);
IF (KEYHASH ≠ CSKEYHASH)

THEN TXT-SHUTDOWN(#AuthenticateFail);
SIGNATURE := DECRYPT(ACRAM, ACBASE, KEY);
(* The value of SIGNATURE_LEN_CONST is implementation-specific*)
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.I] := SIGNATURE[I];
COMPUTEDSIGNATURE := HASH(ACRAM, ACBASE, ACSIZE);
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.SIGNATURE_LEN_CONST+I] := COMPUTEDSIGNATURE[I];
IF (SIGNATURE ≠ COMPUTEDSIGNATURE)

THEN TXT-SHUTDOWN(#AuthenticateFail);
ACMCONTROL := ACRAM[CodeControl];
IF ((ACMCONTROL.0 = 0) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM load))

THEN TXT-SHUTDOWN(#UnexpectedHITM);
IF (ACMCONTROL reserved bits are set)

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[GDTBasePtr] < (ACRAM[HeaderLen] * 4 + Scratch_size)) OR

((ACRAM[GDTBasePtr] + ACRAM[GDTLimit]) >= ACSIZE))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACMCONTROL.0 = 1) and (ACMCONTROL.1 = 1) and (snoop hit to modified
line detected on ACRAM load))
THEN ACEntryPoint := ACBASE+ACRAM[ErrorEntryPoint];

ELSE
ACEntryPoint := ACBASE+ACRAM[EntryPoint];

IF ((ACEntryPoint >= ACSIZE) or (ACEntryPoint < (ACRAM[HeaderLen] * 4 + Scratch_size)))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACRAM[SegSel] > (ACRAM[GDTLimit] - 15)) or (ACRAM[SegSel] < 8))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACRAM[SegSel].TI=1) or (ACRAM[SegSel].RPL≠0))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF (FTM_INTERFACE_ID.[3:0] = 1) (* Alternate FTM Interface has been enabled *)
THEN (* TPM_LOC_CTRL_4 is located at 0FED44008H, TMP_DATA_BUFFER_4 is located at 0FED44080H *)

WRITE(TPM_LOC_CTRL_4) := 01H; (* Modified HASH.START protocol *)
(* Write to firmware storage *)
WRITE(TPM_DATA_BUFFER_4) := SIGNATURE_LEN_CONST + 4;
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

WRITE(TPM_DATA_BUFFER_4 + 2 + I) := ACRAM[SCRATCH.I];
WRITE(TPM_DATA_BUFFER_4 + 2 + SIGNATURE_LEN_CONST) := EDX;
WRITE(FTM.LOC_CTRL) := 06H; (* Modified protocol combining HASH.DATA and HASH.END *)

ELSE IF (FTM_INTERFACE_ID.[3:0] = 0) (* Use standard TPM Interface *)
ACRAM[SCRATCH.SIGNATURE_LEN_CONST] := EDX;
WRITE(TPM.HASH.START) := 0;
FOR I=0 to SIGNATURE_LEN_CONST + 3 DO

WRITE(TPM.HASH.DATA) := ACRAM[SCRATCH.I];
WRITE(TPM.HASH.END) := 0;

FI;
ACMODEFLAG := 1;
CR0.[PG.AM.WP] := 0;

GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-28

CR4 := 00004000h;
EFLAGS := 00000002h;
IA32_EFER := 0;
EBP := ACBASE;
GDTR.BASE := ACBASE+ACRAM[GDTBasePtr];
GDTR.LIMIT := ACRAM[GDTLimit];
CS.SEL := ACRAM[SegSel];
CS.BASE := 0;
CS.LIMIT := FFFFFh;
CS.G := 1;
CS.D := 1;
CS.AR := 9Bh;
DS.SEL := ACRAM[SegSel]+8;
DS.BASE := 0;
DS.LIMIT := FFFFFh;
DS.G := 1;
DS.D := 1;
DS.AR := 93h;
SS := DS;
ES := DS;
DR7 := 00000400h;
IA32_DEBUGCTL := 0;
SignalTXTMsg(UnlockSMRAM);
SignalTXTMsg(OpenPrivate);
SignalTXTMsg(OpenLocality3);
EIP := ACEntryPoint;
END;

RLP_SENTER_ROUTINE: (RLP Only)
Mask SMI, INIT, A20M, and NMI external pin events
Unmask SignalWAKEUP event;
Wait for SignalSENTERContinue message;
IA32_APIC_BASE.BSP := 0;
GOTO SENTER sleep state;
END;

Flags Affected

All flags are cleared.

Use of Prefixes
LOCK Causes #UD.
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).
Operand size Causes #UD.
NP 66/F2/F3 prefixes are not allowed.
Segment overrides Ignored.
Address size Ignored.
REX Ignored.

GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-29

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SENTER] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) If CR0.CD = 1 or CR0.NW = 1 or CR0.NE = 0 or CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If in VMX root operation.
If the initiating processor is not designated as the bootstrap processor via the MSR bit
IA32_APIC_BASE.BSP.
If an Intel® TXT-capable chipset is not present.
If an Intel® TXT-capable chipset interface to TPM is not detected as present.
If a protected partition is already active or the processor is already in authenticated code
mode.
If the processor is in SMM.
If a valid uncorrectable machine check error is logged in IA32_MC[I]_STATUS.
If the authenticated code base is not on a 4096 byte boundary.
If the authenticated code size > processor's authenticated code execution area storage
capacity.
If the authenticated code size is not modulo 64.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SENTER] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[SENTER] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SENTER] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[SENTER] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.
#GP If AC code module does not reside in physical address below 2^32 -1.

64-Bit Mode Exceptions
All protected mode exceptions apply.
#GP If AC code module does not reside in physical address below 2^32 -1.

VM-Exit Condition
Reason (GETSEC) If in VMX non-root operation.

GETSEC[SEXIT]—Exit Measured Environment

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-30

GETSEC[SEXIT]—Exit Measured Environment

Description

The GETSEC[SEXIT] instruction initiates an exit of a measured environment established by GETSEC[SENTER]. The
SEXIT leaf of GETSEC is selected with EAX set to 5 at execution. This instruction leaf sends a message to all logical
processors in the platform to signal the measured environment exit.

There are restrictions enforced by the processor for the execution of the GETSEC[SEXIT] instruction:
• Execution is not allowed unless the processor is in protected mode (CR0.PE = 1) with CPL = 0 and EFLAGS.VM

= 0.
• The processor must be in a measured environment as launched by a previous GETSEC[SENTER] instruction,

but not still in authenticated code execution mode.
• To avoid potential interoperability conflicts between modes, the processor is not allowed to execute this

instruction if it currently is in SMM or in VMX operation.
• To ensure consistent handling of SIPI messages, the processor executing the GETSEC[SEXIT] instruction must

also be designated the BSP (bootstrap processor) as defined by the register bit IA32_APIC_BASE.BSP (bit 8).

Failure to abide by the above conditions results in the processor signaling a general protection violation.

This instruction initiates a sequence to rendezvous the RLPs with the ILP. It then clears the internal processor flag
indicating the processor is operating in a measured environment.

In response to a message signaling the completion of rendezvous, all RLPs restart execution with the instruction
that was to be executed at the time GETSEC[SEXIT] was recognized. This applies to all processor conditions, with
the following exceptions:
• If an RLP executed HLT and was in this halt state at the time of the message initiated by GETSEC[SEXIT], then

execution resumes in the halt state.
• If an RLP was executing MWAIT, then a message initiated by GETSEC[SEXIT] causes an exit of the MWAIT

state, falling through to the next instruction.
• If an RLP was executing an intermediate iteration of a string instruction, then the processor resumes execution

of the string instruction at the point which the message initiated by GETSEC[SEXIT] was recognized.
• If an RLP is still in the SENTER sleep state (never awakened with GETSEC[WAKEUP]), it will be sent to the wait-

for-SIPI state after first clearing the bootstrap processor indicator flag (IA32_APIC_BASE.BSP) and any
pending SIPI state. In this case, such RLPs are initialized to an architectural state consistent with having taken
a soft reset using the INIT# pin.

Prior to completion of the GETSEC[SEXIT] operation, both the ILP and any active RLPs unmask the response of the
external event signals INIT#, A20M, NMI#, and SMI#. This unmasking is performed unconditionally to recognize
pin events which are masked after a GETSEC[SENTER]. The state of A20M is unmasked, as the A20M pin is not
recognized while the measured environment is active.

On a successful exit of the measured environment, the ILP re-locks the Intel® TXT-capable chipset private config-
uration space. GETSEC[SEXIT] does not affect the content of any PCR.

At completion of GETSEC[SEXIT] by the ILP, execution proceeds to the next instruction. Since EFLAGS and the
debug register state are not modified by this instruction, a pending trap condition is free to be signaled if previously
enabled.

Opcode Instruction Description

NP 0F 37

(EAX=5)

GETSEC[SEXIT] Exit measured environment.

GETSEC[SEXIT]—Exit Measured Environment

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-31

Operation in a Uni-Processor Platform

(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)

GETSEC[SEXIT] (ILP Only):
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
ELSE IF ((in VMX root operation) or

(CR0.PE=0) or (CPL>0) or (EFLAGS.VM=1) or
(IA32_APIC_BASE.BSP=0) or
(TXT chipset not present) or
(SENTERFLAG=0) or (ACMODEFLAG=1) or (IN_SMM=1))

THEN #GP(0);
SignalTXTMsg(SEXIT);
DO
WHILE (no SignalSEXIT message);

TXT_SEXIT_MSG_EVENT (ILP & RLP):
Mask and clear SignalSEXIT event;
Clear MONITOR FSM;
Unmask SignalSENTER event;
IF (in VMX operation)

THEN TXT-SHUTDOWN(#IllegalEvent);
SignalTXTMsg(SEXITAck);
IF (logical processor is not ILP)

THEN GOTO RLP_SEXIT_ROUTINE;
(* ILP waits for all logical processors to ACK *)
DO

DONE := READ(LT.STS);
WHILE (NOT DONE);
SignalTXTMsg(SEXITContinue);
SignalTXTMsg(ClosePrivate);
SENTERFLAG := 0;
Unmask SMI, INIT, A20M, and NMI external pin events;
END;

RLP_SEXIT_ROUTINE (RLPs Only):
Wait for SignalSEXITContinue message;
Unmask SMI, INIT, A20M, and NMI external pin events;
IF (prior execution state = HLT)

THEN reenter HLT state;
IF (prior execution state = SENTER sleep)

THEN
IA32_APIC_BASE.BSP := 0;
Clear pending SIPI state;
Call INIT_PROCESSOR_STATE;
Unmask SIPI event;
GOTO WAIT-FOR-SIPI;

FI;
END;

GETSEC[SEXIT]—Exit Measured Environment

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-32

Flags Affected
ILP: None.
RLPs: All flags are modified for an RLP. returning to wait-for-SIPI state, none otherwise.

Use of Prefixes
LOCK Causes #UD.
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).
Operand size Causes #UD.
NP 66/F2/F3 prefixes are not allowed.
Segment overrides Ignored.
Address size Ignored.
REX Ignored.

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SEXIT] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) If CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If in VMX root operation.
If the initiating processor is not designated via the MSR bit IA32_APIC_BASE.BSP.
If an Intel® TXT-capable chipset is not present.
If a protected partition is not already active or the processor is already in authenticated code
mode.
If the processor is in SMM.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SEXIT] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[SEXIT] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SEXIT] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[SEXIT] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.

VM-Exit Condition
Reason (GETSEC) If in VMX non-root operation.

GETSEC[PARAMETERS]—Report the SMX Parameters

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-33

GETSEC[PARAMETERS]—Report the SMX Parameters

Description

The GETSEC[PARAMETERS] instruction returns specific parameter information for SMX features supported by the
processor. Parameter information is returned in EAX, EBX, and ECX, with the input parameter selected using EBX.

Software retrieves parameter information by searching with an input index for EBX starting at 0, and then reading
the returned results in EAX, EBX, and ECX. EAX[4:0] is designated to return a parameter type field indicating if a
parameter is available and what type it is. If EAX[4:0] is returned with 0, this designates a null parameter and indi-
cates no more parameters are available.

Table 7-7 defines the parameter types supported in current and future implementations.

Opcode Instruction Description

NP 0F 37

(EAX=6)

GETSEC[PARAMETERS] Report the SMX parameters.

The parameters index is input in EBX with the result returned in EAX, EBX, and ECX.

Table 7-7. SMX Reporting Parameters Format

Parameter
Type EAX[4:0] Parameter Description EAX[31:5] EBX[31:0] ECX[31:0]

0 NULL Reserved (0 returned) Reserved (unmodified) Reserved (unmodified)

1 Supported AC module
versions

Reserved (0 returned) Version comparison mask Version numbers
supported

2 Max size of authenticated
code execution area

Multiply by 32 for size in
bytes

Reserved (unmodified) Reserved (unmodified)

3 External memory types
supported during AC mode

Memory type bit mask Reserved (unmodified) Reserved (unmodified)

4 Selective SENTER
functionality control

EAX[14:8] correspond to
available SENTER function
disable controls

Reserved (unmodified) Reserved (unmodified)

5 TXT extensions support TXT Feature Extensions
Flags (see Table)

Reserved Reserved

6-31 Undefined Reserved (unmodified) Reserved (unmodified) Reserved (unmodified)

Table 7-8. TXT Feature Extensions Flags

Bit Definition Description

5 Processor based S-CRTM
support

Returns 1 if this processor implements a processor-rooted S-CRTM capability and 0 if
not (S-CRTM is rooted in BIOS).
This flag cannot be used to infer whether the chipset supports TXT or whether the
processor support SMX.

6 Machine Check Handling Returns 1 if it machine check status registers can be preserved through ENTERACCS
and SENTER. If this bit is 1, the caller of ENTERACCS and SENTER is not required to
clear machine check error status bits before invoking these GETSEC leaves.

If this bit returns 0, the caller of ENTERACCS and SENTER must clear all machine
check error status bits before invoking these GETSEC leaves.

31:7 Reserved Reserved for future use. Will return 0.

GETSEC[PARAMETERS]—Report the SMX Parameters

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-34

Supported AC module versions (as defined by the AC module HeaderVersion field) can be determined for a partic-
ular SMX capable processor by the type 1 parameter. Using EBX to index through the available parameters reported
by GETSEC[PARAMETERS] for each unique parameter set returned for type 1, software can determine the
complete list of AC module version(s) supported.

For each parameter set, EBX returns the comparison mask and ECX returns the available HeaderVersion field
values supported, after AND'ing the target HeaderVersion with the comparison mask. Software can then determine
if a particular AC module version is supported by following the pseudo-code search routine given below:

parameter_search_index= 0
do {

EBX= parameter_search_index++
EAX= 6
GETSEC
if (EAX[4:0] = 1) {

if ((version_query & EBX) = ECX) {
version_is_supported= 1
break

}
}

} while (EAX[4:0] ≠ 0)

If only AC modules with a HeaderVersion of 0 are supported by the processor, then only one parameter set of type
1 will be returned, as follows: EAX = 00000001H,

EBX = FFFFFFFFH and ECX = 00000000H.

The maximum capacity for an authenticated code execution area supported by the processor is reported with the
parameter type of 2. The maximum supported size in bytes is determined by multiplying the returned size in
EAX[31:5] by 32. Thus, for a maximum supported authenticated RAM size of 32KBytes, EAX returns with
00008002H.

Supportable memory types for memory mapped outside of the authenticated code execution area are reported
with the parameter type of 3. While is active, as initiated by the GETSEC functions SENTER and ENTERACCS and
terminated by EXITAC, there are restrictions on what memory types are allowed for the rest of system memory. It
is the responsibility of the system software to initialize the memory type range register (MTRR) MSRs and/or the
page attribute table (PAT) to only map memory types consistent with the reporting of this parameter. The reporting
of supportable memory types of external memory is indicated using a bit map returned in EAX[31:8]. These bit
positions correspond to the memory type encodings defined for the MTRR MSR and PAT programming. See
Table 7-9.

The parameter type of 4 is used for enumerating the availability of selective GETSEC[SENTER] function disable
controls. If a 1 is reported in bits 14:8 of the returned parameter EAX, then this indicates a disable control capa-
bility exists with SENTER for a particular function. The enumerated field in bits 14:8 corresponds to use of the EDX
input parameter bits 6:0 for SENTER. If an enumerated field bit is set to 1, then the corresponding EDX input
parameter bit of EDX may be set to 1 to disable that designated function. If the enumerated field bit is 0 or this
parameter is not reported, then no disable capability exists with the corresponding EDX input parameter for
SENTER, and EDX bit(s) must be cleared to 0 to enable execution of SENTER. If no selective disable capability for
SENTER exists as enumerated, then the corresponding bits in the IA32_FEATURE_CONTROL MSR bits 14:8 must
also be programmed to 1 if the SENTER global enable bit 15 of the MSR is set. This is required to enable future
extensibility of SENTER selective disable capability with respect to potentially separate software initialization of the
MSR.

Table 7-9. External Memory Types Using Parameter 3

EAX Bit Position Parameter Description

8 Uncacheable (UC)

9 Write Combining (WC)

11:10 Reserved

12 Write-through (WT)

GETSEC[PARAMETERS]—Report the SMX Parameters

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-35

If the GETSEC[PARAMETERS] leaf or specific parameter is not present for a given SMX capable processor, then
default parameter values should be assumed. These are defined in Table 7-10.

Operation

(* example of a processor supporting only a 0.0 HeaderVersion, 32K ACRAM size, memory types UC and WC *)
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
(* example of a processor supporting a 0.0 HeaderVersion *)

IF (EBX=0) THEN
EAX := 00000001h;
EBX := FFFFFFFFh;
ECX := 00000000h;

ELSE IF (EBX=1)
(* example of a processor supporting a 32K ACRAM size *)
THEN EAX := 00008002h;

ESE IF (EBX= 2)
(* example of a processor supporting external memory types of UC and WC *)
THEN EAX := 00000303h;

ESE IF (EBX= other value(s) less than unsupported index value)
(* EAX value varies. Consult Table 7-7 and Table *)

ELSE (* unsupported index*)
EAX := 00000000h;

END;

Flags Affected

None.

Use of Prefixes
LOCK Causes #UD.
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).
Operand size Causes #UD.

13 Write-protected (WP)

14 Write-back (WB)

31:15 Reserved

Table 7-10. Default Parameter Values

Parameter Type EAX[4:0] Default Setting Parameter Description

1 0.0 only Supported AC module versions.

2 32 KBytes Authenticated code execution area size.

3 UC only External memory types supported during AC execution mode.

4 None Available SENTER selective disable controls.

Table 7-9. External Memory Types Using Parameter 3 (Contd.)

GETSEC[PARAMETERS]—Report the SMX Parameters

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-36

NP 66/F2/F3 prefixes are not allowed.
Segment overrides Ignored.
Address size Ignored.
REX Ignored.

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[PARAMETERS] is not reported as supported by GETSEC[CAPABILITIES].

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[PARAMETERS] is not reported as supported by GETSEC[CAPABILITIES].

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[PARAMETERS] is not reported as supported by GETSEC[CAPABILITIES].

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.

VM-Exit Condition
Reason (GETSEC) If in VMX non-root operation.

GETSEC[SMCTRL]—SMX Mode Control

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-37

GETSEC[SMCTRL]—SMX Mode Control

Description

The GETSEC[SMCTRL] instruction is available for performing certain SMX specific mode control operations. The
operation to be performed is selected through the input register EBX. Currently only an input value in EBX of 0 is
supported. All other EBX settings will result in the signaling of a general protection violation.

If EBX is set to 0, then the SMCTRL leaf is used to re-enable SMI events. SMI is masked by the ILP executing the
GETSEC[SENTER] instruction (SMI is also masked in the responding logical processors in response to SENTER
rendezvous messages.). The determination of when this instruction is allowed and the events that are unmasked
is dependent on the processor context (See Table 7-11). For brevity, the usage of SMCTRL where EBX=0 will be
referred to as GETSEC[SMCTRL(0)].

As part of support for launching a measured environment, the SMI, NMI, and INIT events are masked after
GETSEC[SENTER], and remain masked after exiting authenticated execution mode. Unmasking these events
should be accompanied by securely enabling these event handlers. These security concerns can be addressed in
VMX operation by a MVMM.

The VM monitor can choose two approaches:
• In a dual monitor approach, the executive software will set up an SMM monitor in parallel to the executive VMM

(i.e., the MVMM), see Chapter 33, “System Management Mode‚” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C. The SMM monitor is dedicated to handling SMI events without compromising
the security of the MVMM. This usage model of handling SMI while a measured environment is active does not
require the use of GETSEC[SMCTRL(0)] as event re-enabling after the VMX environment launch is handled
implicitly and through separate VMX based controls.

• If a dedicated SMM monitor will not be established and SMIs are to be handled within the measured
environment, then GETSEC[SMCTRL(0)] can be used by the executive software to re-enable SMI that has been
masked as a result of SENTER.

Table 7-11 defines the processor context in which GETSEC[SMCTRL(0)] can be used and which events will be
unmasked. Note that the events that are unmasked are dependent upon the currently operating processor context.

Opcode Instruction Description

NP 0F 37 (EAX = 7) GETSEC[SMCTRL] Perform specified SMX mode control as selected with the input EBX.

Table 7-11. Supported Actions for GETSEC[SMCTRL(0)]

ILP Mode of Operation SMCTRL execution action

In VMX non-root operation VM exit

SENTERFLAG = 0 #GP(0), illegal context

In authenticated code execution mode
(ACMODEFLAG = 1)

#GP(0), illegal context

SENTERFLAG = 1, not in VMX operation, not in SMM Unmask SMI

SENTERFLAG = 1, in VMX root operation, not in
SMM

Unmask SMI if SMM monitor is not configured, otherwise #GP(0)

SENTERFLAG = 1, In VMX root operation, in SMM #GP(0), illegal context

GETSEC[SMCTRL]—SMX Mode Control

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-38

Operation

(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
ELSE IF ((CR0.PE=0) or (CPL>0) OR (EFLAGS.VM=1))

THEN #GP(0);
ELSE IF((EBX=0) and (SENTERFLAG=1) and (ACMODEFLAG=0) and (IN_SMM=0) and

 (((in VMX root operation) and (SMM monitor not configured)) or (not in VMX operation)))
THEN unmask SMI;

ELSE
#GP(0);

END

Flags Affected
None.

Use of Prefixes
LOCK Causes #UD.
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).
Operand size Causes #UD.
NP 66/F2/F3 prefixes are not allowed.
Segment overrides Ignored.
Address size Ignored.
REX Ignored.

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SMCTRL] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) If CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If in VMX root operation.
If a protected partition is not already active or the processor is currently in authenticated code
mode.
If the processor is in SMM.
If the SMM monitor is not configured.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SMCTRL] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[SMCTRL] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SMCTRL] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[SMCTRL] is not recognized in virtual-8086 mode.

GETSEC[SMCTRL]—SMX Mode Control

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-39

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.

VM-exit Condition
Reason (GETSEC) If in VMX non-root operation.

GETSEC[WAKEUP]—Wake Up Sleeping Processors in Measured Environment

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-40

GETSEC[WAKEUP]—Wake Up Sleeping Processors in Measured Environment

Description

The GETSEC[WAKEUP] leaf function broadcasts a wake-up message to all logical processors currently in the
SENTER sleep state. This GETSEC leaf must be executed only by the ILP, in order to wake-up the RLPs. Responding
logical processors (RLPs) enter the SENTER sleep state after completion of the SENTER rendezvous sequence.

The GETSEC[WAKEUP] instruction may only be executed:
• In a measured environment as initiated by execution of GETSEC[SENTER].
• Outside of authenticated code execution mode.
• Execution is not allowed unless the processor is in protected mode with CPL = 0 and EFLAGS.VM = 0.
• In addition, the logical processor must be designated as the boot-strap processor as configured by setting

IA32_APIC_BASE.BSP = 1.

If these conditions are not met, attempts to execute GETSEC[WAKEUP] result in a general protection violation.

An RLP exits the SENTER sleep state and start execution in response to a WAKEUP signal initiated by ILP’s execu-
tion of GETSEC[WAKEUP]. The RLP retrieves a pointer to a data structure that contains information to enable
execution from a defined entry point. This data structure is located using a physical address held in the Intel® TXT-
capable chipset configuration register LT.MLE.JOIN. The register is publicly writable in the chipset by all processors
and is not restricted by the Intel® TXT-capable chipset configuration register lock status. The format of this data
structure is defined in Table 7-12.

The MLE JOIN data structure contains the information necessary to initialize RLP processor state and permit the
processor to join the measured environment. The GDTR, LIP, and CS, DS, SS, and ES selector values are initialized
using this data structure. The CS selector index is derived directly from the segment selector initializer field; DS,
SS, and ES selectors are initialized to CS+8. The segment descriptor fields are initialized implicitly with BASE = 0,
LIMIT = FFFFFH, G = 1, D = 1, P = 1, S = 1; read/write/access for DS, SS, and ES; and execute/read/access for
CS. It is the responsibility of external software to establish a GDT pointed to by the MLE JOIN data structure that
contains descriptor entries consistent with the implicit settings initialized by the processor (see Table 7-6). Certain
states from the content of Table 7-12 are checked for consistency by the processor prior to execution. A failure of
any consistency check results in the RLP aborting entry into the protected environment and signaling an Intel®
TXT shutdown condition. The specific checks performed are documented later in this section. After successful
completion of processor consistency checks and subsequent initialization, RLP execution in the measured environ-
ment begins from the entry point at offset 12 (as indicated in Table 7-12).

Opcode Instruction Description

NP 0F 37

(EAX=8)

GETSEC[WAKEUP] Wake up the responding logical processors from the SENTER sleep state.

Table 7-12. RLP MVMM JOIN Data Structure

Offset Field

0 GDT limit

4 GDT base pointer

8 Segment selector initializer

12 EIP

GETSEC[WAKEUP]—Wake Up Sleeping Processors in Measured Environment

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-41

Operation

(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
ELSE IF ((CR0.PE=0) or (CPL>0) or (EFLAGS.VM=1) or (SENTERFLAG=0) or (ACMODEFLAG=1) or (IN_SMM=0) or (in VMX operation) or
(IA32_APIC_BASE.BSP=0) or (TXT chipset not present))

THEN #GP(0);
ELSE

SignalTXTMsg(WAKEUP);
END;

RLP_SIPI_WAKEUP_FROM_SENTER_ROUTINE: (RLP Only)
WHILE (no SignalWAKEUP event);
IF (IA32_SMM_MONITOR_CTL[0] ≠ ILP.IA32_SMM_MONITOR_CTL[0])

THEN TXT-SHUTDOWN(#IllegalEvent)
IF (IA32_SMM_MONITOR_CTL[0] = 0)

THEN Unmask SMI pin event;
ELSE

Mask SMI pin event;
Mask A20M, and NMI external pin events (unmask INIT);
Mask SignalWAKEUP event;
Invalidate processor TLB(s);
Drain outgoing transactions;
TempGDTRLIMIT := LOAD(LT.MLE.JOIN);
TempGDTRBASE := LOAD(LT.MLE.JOIN+4);
TempSegSel := LOAD(LT.MLE.JOIN+8);
TempEIP := LOAD(LT.MLE.JOIN+12);
IF (TempGDTLimit & FFFF0000h)

THEN TXT-SHUTDOWN(#BadJOINFormat);
IF ((TempSegSel > TempGDTRLIMIT-15) or (TempSegSel < 8))

THEN TXT-SHUTDOWN(#BadJOINFormat);
IF ((TempSegSel.TI=1) or (TempSegSel.RPL≠0))

THEN TXT-SHUTDOWN(#BadJOINFormat);
CR0.[PG,CD,NW,AM,WP] := 0;
CR0.[NE,PE] := 1;
CR4 := 00004000h;
EFLAGS := 00000002h;
IA32_EFER := 0;
GDTR.BASE := TempGDTRBASE;
GDTR.LIMIT := TempGDTRLIMIT;
CS.SEL := TempSegSel;
CS.BASE := 0;
CS.LIMIT := FFFFFh;
CS.G := 1;
CS.D := 1;
CS.AR := 9Bh;
DS.SEL := TempSegSel+8;
DS.BASE := 0;
DS.LIMIT := FFFFFh;
DS.G := 1;

GETSEC[WAKEUP]—Wake Up Sleeping Processors in Measured Environment

SAFER MODE EXTENSIONS REFERENCE

Vol. 2D 7-42

DS.D := 1;
DS.AR := 93h;
SS := DS;
ES := DS;
DR7 := 00000400h;
IA32_DEBUGCTL := 0;
EIP := TempEIP;
END;

Flags Affected

None.

Use of Prefixes
LOCK Causes #UD.
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).
Operand size Causes #UD.
NP 66/F2/F3 prefixes are not allowed.
Segment overrides Ignored.
Address size Ignored.
REX Ignored.

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[WAKEUP] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) If CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If in VMX operation.
If a protected partition is not already active or the processor is currently in authenticated code
mode.
If the processor is in SMM.

#UD If CR4.SMXE = 0.
If GETSEC[WAKEUP] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) GETSEC[WAKEUP] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[WAKEUP] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[WAKEUP] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.

VM-exit Condition
Reason (GETSEC) If in VMX non-root operation.

Vol. 2D 8-1

CHAPTER 8
INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™

PROCESSORS

This chapter describes the instruction set that is unique to Intel® Xeon Phi™ Processors based on the Knights
Landing and Knights Mill microarchitectures. The set is not supported in any other Intel processors. Included are
Intel® AVX-512 instructions. For additional instructions supported on these processors, see Chapter 3, “Instruction
Set Reference, A-L”; Chapter 4, “Instruction Set Reference, M-U”; Chapter 5, “Instruction Set Reference, V”; and
Chapter 6, “Instruction Set Reference, W-Z.”

PREFETCHWT1—Prefetch Vector Data Into Caches With Intent to Write and T1 Hint

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-2

PREFETCHWT1—Prefetch Vector Data Into Caches With Intent to Write and T1 Hint

Instruction Operand Encoding

Description

Fetches the line of data from memory that contains the byte specified with the source operand to a location in the
cache hierarchy specified by an intent to write hint (so that data is brought into ‘Exclusive’ state via a request for
ownership) and a locality hint:
• T1 (temporal data with respect to first level cache)—prefetch data into the second level cache.
The source operand is a byte memory location. (The locality hints are encoded into the machine level instruction
using bits 3 through 5 of the ModR/M byte. Use of any ModR/M value other than the specified ones will lead to
unpredictable behavior.)
If the line selected is already present in the cache hierarchy at a level closer to the processor, no data movement
occurs. Prefetches from uncacheable or WC memory are ignored.
The PREFETCHWT1 instruction is merely a hint and does not affect program behavior. If executed, this instruction
moves data closer to the processor in anticipation of future use.
The implementation of prefetch locality hints is implementation-dependent, and can be overloaded or ignored by a
processor implementation. The amount of data prefetched is also processor implementation-dependent. It will,
however, be a minimum of 32 bytes. Additional details of the implementation-dependent locality hints are
described in Section 9.5, “Memory Optimization Using Prefetch” of the Intel® 64 and IA-32 Architectures Optimi-
zation Reference Manual.
It should be noted that processors are free to speculatively fetch and cache data from system memory regions that
are assigned a memory-type that permits speculative reads (that is, the WB, WC, and WT memory types). A
PREFETCHWT1 instruction is considered a hint to this speculative behavior. Because this speculative fetching can
occur at any time and is not tied to instruction execution, a PREFETCHWT1 instruction is not ordered with respect
to the fence instructions (MFENCE, SFENCE, and LFENCE) or locked memory references. A PREFETCHWT1 instruc-
tion is also unordered with respect to CLFLUSH and CLFLUSHOPT instructions, other PREFETCHWT1 instructions, or
any other general instruction. It is ordered with respect to serializing instructions such as CPUID, WRMSR, OUT,
and MOV CR.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘mem’ into the cache level specified by ‘Level’; a request
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a
hint for the processor and may be skipped depending on implementation.

Prefetch (m8, Level = 1, EXCLUSIVE=1);

Flags Affected

All flags are affected.

C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch(char const *, int hint= _MM_HINT_ET1);

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID Feature
Flag

Description

0F 0D /2
PREFETCHWT1 m8

M V/V PREFETCHWT1 Move data from m8 closer to the processor using T1 hint
with intent to write.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) N/A N/A N/A

PREFETCHWT1—Prefetch Vector Data Into Caches With Intent to Write and T1 Hint

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-3

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

V4FMADDPS/V4FNMADDPS—Packed Single Precision Floating-Point Fused Multiply-Add (4-Iterations)

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-4

V4FMADDPS/V4FNMADDPS—Packed Single Precision Floating-Point Fused Multiply-Add
(4-Iterations)

Instruction Operand Encoding

Description

This instruction computes 4 sequential packed fused single precision floating-point multiply-add instructions with a
sequentially selected memory operand in each of the four steps.
In the above box, the notation of “+3” is used to denote that the instruction accesses 4 source registers based on
that operand; sources are consecutive, start in a multiple of 4 boundary, and contain the encoded register operand.
This instruction supports memory fault suppression. The entire memory operand is loaded if any of the 16 lowest
significant mask bits is set to 1 or if a “no masking” encoding is used.
The tuple type Tuple1_4X implies that four 32-bit elements (16 bytes) are referenced by the memory operation
portion of this instruction.
Rounding is performed at every FMA (fused multiply and add) boundary. Exceptions are also taken sequentially.
Pre- and post-computational exceptions of the first FMA take priority over the pre- and post-computational excep-
tions of the second FMA, etc.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

EVEX.512.F2.0F38.W0 9A /r
V4FMADDPS zmm1{k1}{z}, zmm2+3,
m128

A V/V AVX512_4FMAPS Multiply packed single precision floating-point
values from source register block indicated by
zmm2 by values from m128 and accumulate the
result in zmm1.

EVEX.512.F2.0F38.W0 AA /r
V4FNMADDPS zmm1{k1}{z},
zmm2+3, m128

A V/V AVX512_4FMAPS Multiply and negate packed single precision
floating-point values from source register block
indicated by zmm2 by values from m128 and
accumulate the result in zmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1_4X ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A

V4FMADDPS/V4FNMADDPS—Packed Single Precision Floating-Point Fused Multiply-Add (4-Iterations)

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-5

Operation

src_reg_id is the 5 bit index of the vector register specified in the instruction as the src1 register.

define NFMA_PS(kl, vl, dest, k1, msrc, regs_loaded, src_base, posneg):
tmpdest := dest

// reg[] is an array representing the SIMD register file.
FOR j := 0 to regs_loaded-1:

FOR i := 0 to kl-1:
IF k1[i] or *no writemask*:

IF posneg = 0:
tmpdest.single[i] := RoundFPControl_MXCSR(tmpdest.single[i] - reg[src_base + j].single[i] * msrc.single[j])

ELSE:
tmpdest.single[i] := RoundFPControl_MXCSR(tmpdest.single[i] + reg[src_base + j].single[i] * msrc.single[j])

ELSE IF *zeroing*:
tmpdest.single[i] := 0

dest := tmpdst
dest[MAX_VL-1:VL] := 0

V4FMADDPS and V4FNMADDPS dest{k1}, src1, msrc (AVX512)
KL, VL = (16,512)

regs_loaded := 4
src_base := src_reg_id & ~3 // for src1 operand
posneg := 0 if negative form, 1 otherwise
NFMA_PS(kl, vl, dest, k1, msrc, regs_loaded, src_base, posneg)

Intel C/C++ Compiler Intrinsic Equivalent

V4FMADDPS __m512 _mm512_4fmadd_ps(__m512, __m512x4, __m128 *);
V4FMADDPS __m512 _mm512_mask_4fmadd_ps(__m512, __mmask16, __m512x4, __m128 *);
V4FMADDPS __m512 _mm512_maskz_4fmadd_ps(__mmask16, __m512, __m512x4, __m128 *);
V4FNMADDPS __m512 _mm512_4fnmadd_ps(__m512, __m512x4, __m128 *);
V4FNMADDPS __m512 _mm512_mask_4fnmadd_ps(__m512, __mmask16, __m512x4, __m128 *);
V4FNMADDPS __m512 _mm512_maskz_4fnmadd_ps(__mmask16, __m512, __m512x4, __m128 *);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Type E2; additionally:
#UD If the EVEX broadcast bit is set to 1.
#UD If the MODRM.mod = 0b11.

V4FMADDSS/V4FNMADDSS—Scalar Single Precision Floating-Point Fused Multiply-Add (4-Iterations)

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-6

V4FMADDSS/V4FNMADDSS—Scalar Single Precision Floating-Point Fused Multiply-Add
(4-Iterations)

Instruction Operand Encoding

Description

This instruction computes 4 sequential scalar fused single precision floating-point multiply-add instructions with a
sequentially selected memory operand in each of the four steps.
In the above box, the notation of “+3” is used to denote that the instruction accesses 4 source registers based that
operand; sources are consecutive, start in a multiple of 4 boundary, and contain the encoded register operand.
This instruction supports memory fault suppression. The entire memory operand is loaded if the least significant
mask bit is set to 1 or if a “no masking” encoding is used.
The tuple type Tuple1_4X implies that four 32-bit elements (16 bytes) are referenced by the memory operation
portion of this instruction.
Rounding is performed at every FMA boundary. Exceptions are also taken sequentially. Pre- and post-computa-
tional exceptions of the first FMA take priority over the pre- and post-computational exceptions of the second FMA,
etc.

Operation

src_reg_id is the 5 bit index of the vector register specified in the instruction as the src1 register.

define NFMA_SS(vl, dest, k1, msrc, regs_loaded, src_base, posneg):
tmpdest := dest
// reg[] is an array representing the SIMD register file.
IF k1[0] or *no writemask*:

FOR j := 0 to regs_loaded - 1:
IF posneg = 0:

tmpdest.single[0] := RoundFPControl_MXCSR(tmpdest.single[0] - reg[src_base + j].single[0] * msrc.single[j])
ELSE:

tmpdest.single[0] := RoundFPControl_MXCSR(tmpdest.single[0] + reg[src_base + j].single[0] * msrc.single[j])
ELSE IF *zeroing*:

tmpdest.single[0] := 0
dest := tmpdst
dest[MAX_VL-1:VL] := 0

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

EVEX.LLIG.F2.0F38.W0 9B /r
V4FMADDSS xmm1{k1}{z},
xmm2+3, m128

A V/V AVX512_4FMAPS Multiply scalar single precision floating-point
values from source register block indicated by
xmm2 by values from m128 and accumulate the
result in xmm1.

EVEX.LLIG.F2.0F38.W0 AB /r
V4FNMADDSS xmm1{k1}{z},
xmm2+3, m128

A V/V AVX512_4FMAPS Multiply and negate scalar single precision
floating-point values from source register block
indicated by xmm2 by values from m128 and
accumulate the result in xmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1_4X ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A

V4FMADDSS/V4FNMADDSS—Scalar Single Precision Floating-Point Fused Multiply-Add (4-Iterations)

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-7

V4FMADDSS and V4FNMADDSS dest{k1}, src1, msrc (AVX512)
VL = 128

regs_loaded := 4
src_base := src_reg_id & ~3 // for src1 operand
posneg := 0 if negative form, 1 otherwise
NFMA_SS(vl, dest, k1, msrc, regs_loaded, src_base, posneg)

Intel C/C++ Compiler Intrinsic Equivalent

V4FMADDSS __m128 _mm_4fmadd_ss(__m128, __m128x4, __m128 *);
V4FMADDSS __m128 _mm_mask_4fmadd_ss(__m128, __mmask8, __m128x4, __m128 *);
V4FMADDSS __m128 _mm_maskz_4fmadd_ss(__mmask8, __m128, __m128x4, __m128 *);
V4FNMADDSS __m128 _mm_4fnmadd_ss(__m128, __m128x4, __m128 *);
V4FNMADDSS __m128 _mm_mask_4fnmadd_ss(__m128, __mmask8, __m128x4, __m128 *);
V4FNMADDSS __m128 _mm_maskz_4fnmadd_ss(__mmask8, __m128, __m128x4, __m128 *);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Type E2; additionally:
#UD If the EVEX broadcast bit is set to 1.
#UD If the MODRM.mod = 0b11.

VEXP2PD—Approximation to the Exponential 2^x of Packed Double Precision Floating-Point Values With Less Than 2^-23 Relative

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-8

VEXP2PD—Approximation to the Exponential 2^x of Packed Double Precision Floating-Point
Values With Less Than 2^-23 Relative Error

Instruction Operand Encoding

Description

Computes the approximate base-2 exponential evaluation of the double precision floating-point values in the
source operand (the second operand) and stores the results to the destination operand (the first operand) using
the writemask k1. The approximate base-2 exponential is evaluated with less than 2^-23 of relative error.
Denormal input values are treated as zeros and do not signal #DE, irrespective of MXCSR.DAZ. Denormal results
are flushed to zeros and do not signal #UE, irrespective of MXCSR.FTZ.
The source operand is a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 64-bit
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
A numerically exact implementation of VEXP2xx can be found at https://software.intel.com/en-us/articles/refer-
ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VEXP2PD
(KL, VL) = (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+63:i] := EXP2_23_DP(SRC[63:0])
ELSE DEST[i+63:i] := EXP2_23_DP(SRC[i+63:i])

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI;

FI;
ENDFOR;

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.512.66.0F38.W1 C8 /r
VEXP2PD zmm1 {k1}{z},
zmm2/m512/m64bcst {sae}

A V/V AVX512ER Computes approximations to the exponential 2^x (with less
than 2^-23 of maximum relative error) of the packed double
precision floating-point values from zmm2/m512/m64bcst and
stores the floating-point result in zmm1with writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

VEXP2PD—Approximation to the Exponential 2^x of Packed Double Precision Floating-Point Values With Less Than 2^-23 Relative

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-9

Intel C/C++ Compiler Intrinsic Equivalent

VEXP2PD __m512d _mm512_exp2a23_round_pd (__m512d a, int sae);
VEXP2PD __m512d _mm512_mask_exp2a23_round_pd (__m512d a, __mmask8 m, __m512d b, int sae);
VEXP2PD __m512d _mm512_maskz_exp2a23_round_pd (__mmask8 m, __m512d b, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Overflow.

Other Exceptions

See Table 2-48, “Type E2 Class Exception Conditions.”

Table 8-1. Special Values Behavior

Source Input Result Comments

NaN QNaN(src) If (SRC = SNaN) then #I

+∞ +∞

+/-0 1.0f Exact result

-∞ +0.0f

Integral value N 2^ (N) Exact result

VEXP2PS—Approximation to the Exponential 2^x of Packed Single Precision Floating-Point Values With Less Than 2^-23 Relative Er-

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-10

VEXP2PS—Approximation to the Exponential 2^x of Packed Single Precision Floating-Point
Values With Less Than 2^-23 Relative Error

Instruction Operand Encoding

Description

Computes the approximate base-2 exponential evaluation of the single precision floating-point values in the source
operand (the second operand) and store the results in the destination operand (the first operand) using the write-
mask k1. The approximate base-2 exponential is evaluated with less than 2^-23 of relative error.
Denormal input values are treated as zeros and do not signal #DE, irrespective of MXCSR.DAZ. Denormal results
are flushed to zeros and do not signal #UE, irrespective of MXCSR.FTZ.
The source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
A numerically exact implementation of VEXP2xx can be found at https://software.intel.com/en-us/articles/refer-
ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VEXP2PS
(KL, VL) = (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+31:i] := EXP2_23_SP(SRC[31:0])
ELSE DEST[i+31:i] := EXP2_23_SP(SRC[i+31:i])

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI;

FI;
ENDFOR;

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.512.66.0F38.W0 C8 /r
VEXP2PS zmm1 {k1}{z},
zmm2/m512/m32bcst {sae}

A V/V AVX512ER Computes approximations to the exponential 2^x (with less
than 2^-23 of maximum relative error) of the packed single
precision floating-point values from zmm2/m512/m32bcst and
stores the floating-point result in zmm1with writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

VEXP2PS—Approximation to the Exponential 2^x of Packed Single Precision Floating-Point Values With Less Than 2^-23 Relative Er-

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-11

Intel C/C++ Compiler Intrinsic Equivalent

VEXP2PS __m512 _mm512_exp2a23_round_ps (__m512 a, int sae);
VEXP2PS __m512 _mm512_mask_exp2a23_round_ps (__m512 a, __mmask16 m, __m512 b, int sae);
VEXP2PS __m512 _mm512_maskz_exp2a23_round_ps (__mmask16 m, __m512 b, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Overflow.

Other Exceptions

See Table 2-48, “Type E2 Class Exception Conditions.”

Table 8-2. Special Values Behavior

Source Input Result Comments

NaN QNaN(src) If (SRC = SNaN) then #I

+∞ +∞

+/-0 1.0f Exact result

-∞ +0.0f

Integral value N 2^ (N) Exact result

VGATHERPF0DPS/VGATHERPF0QPS/VGATHERPF0DPD/VGATHERPF0QPD—Sparse Prefetch Packed SP/DP Data Values With Signed

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-12

VGATHERPF0DPS/VGATHERPF0QPS/VGATHERPF0DPD/VGATHERPF0QPD—Sparse Prefetch
Packed SP/DP Data Values With Signed Dword, Signed Qword Indices Using T0 Hint

Instruction Operand Encoding

Description

The instruction conditionally prefetches up to sixteen 32-bit or eight 64-bit integer byte data elements. The
elements are specified via the VSIB (i.e., the index register is an zmm, holding packed indices). Elements will only
be prefetched if their corresponding mask bit is one.
Lines prefetched are loaded into to a location in the cache hierarchy specified by a locality hint (T0):
• T0 (temporal data)—prefetch data into the first level cache.
[PS data] For dword indices, the instruction will prefetch sixteen memory locations. For qword indices, the instruc-
tion will prefetch eight values.
[PD data] For dword and qword indices, the instruction will prefetch eight memory locations.
Note that:
(1) The prefetches may happen in any order (or not at all). The instruction is a hint.
(2) The mask is left unchanged.
(3) Not valid with 16-bit effective addresses. Will deliver a #UD fault.
(4) No FP nor memory faults may be produced by this instruction.
(5) Prefetches do not handle cache line splits
(6) A #UD is signaled if the memory operand is encoded without the SIB byte.

Operation

BASE_ADDR stands for the memory operand base address (a GPR); may not exist.
VINDEX stands for the memory operand vector of indices (a vector register).
SCALE stands for the memory operand scalar (1, 2, 4 or 8).
DISP is the optional 1, 2 or 4 byte displacement.
PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘mem’ into the cache level specified by ‘Level’; a request
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a
hint for the processor and may be skipped depending on implementation.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.512.66.0F38.W0 C6 /1 /vsib
VGATHERPF0DPS vm32z {k1}

A V/V AVX512PF Using signed dword indices, prefetch sparse byte
memory locations containing single precision data
using opmask k1 and T0 hint.

EVEX.512.66.0F38.W0 C7 /1 /vsib
VGATHERPF0QPS vm64z {k1}

A V/V AVX512PF Using signed qword indices, prefetch sparse byte
memory locations containing single precision data
using opmask k1 and T0 hint.

EVEX.512.66.0F38.W1 C6 /1 /vsib
VGATHERPF0DPD vm32y {k1}

A V/V AVX512PF Using signed dword indices, prefetch sparse byte
memory locations containing double precision data
using opmask k1 and T0 hint.

EVEX.512.66.0F38.W1 C7 /1 /vsib
VGATHERPF0QPD vm64z {k1}

A V/V AVX512PF Using signed qword indices, prefetch sparse byte
memory locations containing double precision data
using opmask k1 and T0 hint.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

N/A N/A N/A

VGATHERPF0DPS/VGATHERPF0QPS/VGATHERPF0DPD/VGATHERPF0QPD—Sparse Prefetch Packed SP/DP Data Values With Signed

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-13

VGATHERPF0DPS (EVEX Encoded Version)
(KL, VL) = (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[i+31:i]) * SCALE + DISP], Level=0, RFO = 0)
FI;

ENDFOR

VGATHERPF0DPD (EVEX Encoded Version)
(KL, VL) = (8, 512)
FOR j := 0 TO KL-1

i := j * 64
k := j * 32
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[k+31:k]) * SCALE + DISP], Level=0, RFO = 0)
FI;

ENDFOR

VGATHERPF0QPS (EVEX Encoded Version)
(KL, VL) = (8, 256)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[i+63:i]) * SCALE + DISP], Level=0, RFO = 0)
FI;

ENDFOR

VGATHERPF0QPD (EVEX Encoded Version)
(KL, VL) = (8, 512)
FOR j := 0 TO KL-1

i := j * 64
k := j * 64
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[k+63:k]) * SCALE + DISP], Level=0, RFO = 0)
FI;

ENDFOR

Intel C/C++ Compiler Intrinsic Equivalent

VGATHERPF0DPD void _mm512_mask_prefetch_i32gather_pd(__m256i vdx, __mmask8 m, void * base, int scale, int hint);
VGATHERPF0DPS void _mm512_mask_prefetch_i32gather_ps(__m512i vdx, __mmask16 m, void * base, int scale, int hint);
VGATHERPF0QPD void _mm512_mask_prefetch_i64gather_pd(__m512i vdx, __mmask8 m, void * base, int scale, int hint);
VGATHERPF0QPS void _mm512_mask_prefetch_i64gather_ps(__m512i vdx, __mmask8 m, void * base, int scale, int hint);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-64, “Type E12NP Class Exception Conditions.”

VGATHERPF1DPS/VGATHERPF1QPS/VGATHERPF1DPD/VGATHERPF1QPD—Sparse Prefetch Packed SP/DP Data Values With Signed

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-14

VGATHERPF1DPS/VGATHERPF1QPS/VGATHERPF1DPD/VGATHERPF1QPD—Sparse Prefetch
Packed SP/DP Data Values With Signed Dword, Signed Qword Indices Using T1 Hint

Instruction Operand Encoding

Description

The instruction conditionally prefetches up to sixteen 32-bit or eight 64-bit integer byte data elements. The
elements are specified via the VSIB (i.e., the index register is an zmm, holding packed indices). Elements will only
be prefetched if their corresponding mask bit is one.
Lines prefetched are loaded into to a location in the cache hierarchy specified by a locality hint (T1):
• T1 (temporal data)—prefetch data into the second level cache.
[PS data] For dword indices, the instruction will prefetch sixteen memory locations. For qword indices, the instruc-
tion will prefetch eight values.
[PD data] For dword and qword indices, the instruction will prefetch eight memory locations.
Note that:
(1) The prefetches may happen in any order (or not at all). The instruction is a hint.
(2) The mask is left unchanged.
(3) Not valid with 16-bit effective addresses. Will deliver a #UD fault.
(4) No FP nor memory faults may be produced by this instruction.
(5) Prefetches do not handle cache line splits
(6) A #UD is signaled if the memory operand is encoded without the SIB byte.

Operation

BASE_ADDR stands for the memory operand base address (a GPR); may not exist.
VINDEX stands for the memory operand vector of indices (a vector register).
SCALE stands for the memory operand scalar (1, 2, 4 or 8).
DISP is the optional 1, 2 or 4 byte displacement.
PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘mem’ into the cache level specified by ‘Level’; a request
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a
hint for the processor and may be skipped depending on implementation.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.512.66.0F38.W0 C6 /2 /vsib
VGATHERPF1DPS vm32z {k1}

A V/V AVX512PF Using signed dword indices, prefetch sparse byte
memory locations containing single precision data using
opmask k1 and T1 hint.

EVEX.512.66.0F38.W0 C7 /2 /vsib
VGATHERPF1QPS vm64z {k1}

A V/V AVX512PF Using signed qword indices, prefetch sparse byte
memory locations containing single precision data using
opmask k1 and T1 hint.

EVEX.512.66.0F38.W1 C6 /2 /vsib
VGATHERPF1DPD vm32y {k1}

A V/V AVX512PF Using signed dword indices, prefetch sparse byte
memory locations containing double precision data using
opmask k1 and T1 hint.

EVEX.512.66.0F38.W1 C7 /2 /vsib
VGATHERPF1QPD vm64z {k1}

A V/V AVX512PF Using signed qword indices, prefetch sparse byte
memory locations containing double precision data using
opmask k1 and T1 hint.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

N/A N/A N/A

VGATHERPF1DPS/VGATHERPF1QPS/VGATHERPF1DPD/VGATHERPF1QPD—Sparse Prefetch Packed SP/DP Data Values With Signed

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-15

VGATHERPF1DPS (EVEX Encoded Version)
(KL, VL) = (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[i+31:i]) * SCALE + DISP], Level=1, RFO = 0)
FI;

ENDFOR

VGATHERPF1DPD (EVEX Encoded Version)
(KL, VL) = (8, 512)
FOR j := 0 TO KL-1

i := j * 64
k := j * 32
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[k+31:k]) * SCALE + DISP], Level=1, RFO = 0)
FI;

ENDFOR

VGATHERPF1QPS (EVEX Encoded Version)
(KL, VL) = (8, 256)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[i+63:i]) * SCALE + DISP], Level=1, RFO = 0)
FI;

ENDFOR

VGATHERPF1QPD (EVEX Encoded Version)
(KL, VL) = (8, 512)
FOR j := 0 TO KL-1

i := j * 64
k := j * 64
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[k+63:k]) * SCALE + DISP], Level=1, RFO = 0)
FI;

ENDFOR

Intel C/C++ Compiler Intrinsic Equivalent

VGATHERPF1DPD void _mm512_mask_prefetch_i32gather_pd(__m256i vdx, __mmask8 m, void * base, int scale, int hint);
VGATHERPF1DPS void _mm512_mask_prefetch_i32gather_ps(__m512i vdx, __mmask16 m, void * base, int scale, int hint);
VGATHERPF1QPD void _mm512_mask_prefetch_i64gather_pd(__m512i vdx, __mmask8 m, void * base, int scale, int hint);
VGATHERPF1QPS void _mm512_mask_prefetch_i64gather_ps(__m512i vdx, __mmask8 m, void * base, int scale, int hint);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-64, “Type E12NP Class Exception Conditions.”

VP4DPWSSDS—Dot Product of Signed Words With Dword Accumulation and Saturation (4-Iterations)

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-16

VP4DPWSSDS—Dot Product of Signed Words With Dword Accumulation and Saturation
(4-Iterations)

Instruction Operand Encoding

Description

This instruction computes 4 sequential register source-block dot-products of two signed word operands with
doubleword accumulation and signed saturation. The memory operand is sequentially selected in each of the four
steps.
In the above box, the notation of “+3” is used to denote that the instruction accesses 4 source registers based on
that operand; sources are consecutive, start in a multiple of 4 boundary, and contain the encoded register operand.
This instruction supports memory fault suppression. The entire memory operand is loaded if any bit of the lowest
16-bits of the mask is set to 1 or if a “no masking” encoding is used.
The tuple type Tuple1_4X implies that four 32-bit elements (16 bytes) are referenced by the memory operation
portion of this instruction.

Operation

src_reg_id is the 5 bit index of the vector register specified in the instruction as the src1 register.

VP4DPWSSDS dest, src1, src2
(KL,VL) = (16,512)
N := 4

ORIGDEST := DEST
src_base := src_reg_id & ~ (N-1) // for src1 operand

FOR i := 0 to KL-1:
IF k1[i] or *no writemask*:

FOR m := 0 to N-1:
t := SRC2.dword[m]
p1dword := reg[src_base+m].word[2*i] * t.word[0]
p2dword := reg[src_base+m].word[2*i+1] * t.word[1]
DEST.dword[i] := SIGNED_DWORD_SATURATE(DEST.dword[i] + p1dword + p2dword)

ELSE IF *zeroing*:
DEST.dword[i] := 0

ELSE
DEST.dword[i] := ORIGDEST.dword[i]

DEST[MAX_VL-1:VL] := 0

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

EVEX.512.F2.0F38.W0 53 /r
VP4DPWSSDS zmm1{k1}{z},
zmm2+3, m128

A V/V AVX512_4VNNIW Multiply signed words from source register block
indicated by zmm2 by signed words from m128
and accumulate the resulting dword results with
signed saturation in zmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1_4X ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A

VP4DPWSSDS—Dot Product of Signed Words With Dword Accumulation and Saturation (4-Iterations)

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-17

Intel C/C++ Compiler Intrinsic Equivalent

VP4DPWSSDS __m512i _mm512_4dpwssds_epi32(__m512i, __m512ix4, __m128i *);
VP4DPWSSDS __m512i _mm512_mask_4dpwssds_epi32(__m512i, __mmask16, __m512ix4, __m128i *);
VP4DPWSSDS __m512i _mm512_maskz_4dpwssds_epi32(__mmask16, __m512i, __m512ix4, __m128i *);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Type E4; additionally:
#UD If the EVEX broadcast bit is set to 1.
#UD If the MODRM.mod = 0b11.

VP4DPWSSD—Dot Product of Signed Words With Dword Accumulation (4-Iterations)

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-18

VP4DPWSSD—Dot Product of Signed Words With Dword Accumulation (4-Iterations)

Instruction Operand Encoding

Description

This instruction computes 4 sequential register source-block dot-products of two signed word operands with
doubleword accumulation; see Figure 8-1 below. The memory operand is sequentially selected in each of the four
steps.
In the above box, the notation of “+3”' is used to denote that the instruction accesses 4 source registers based on
that operand; sources are consecutive, start in a multiple of 4 boundary, and contain the encoded register operand.
This instruction supports memory fault suppression. The entire memory operand is loaded if any bit of the lowest
16-bits of the mask is set to 1 or if a “no masking” encoding is used.
The tuple type Tuple1_4X implies that four 32-bit elements (16 bytes) are referenced by the memory operation
portion of this instruction.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

EVEX.512.F2.0F38.W0 52 /r
VP4DPWSSD zmm1{k1}{z}, zmm2+3,
m128

A V/V AVX512_4VNNIW Multiply signed words from source register block
indicated by zmm2 by signed words from m128
and accumulate resulting signed dwords in zmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1_4X ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Figure 8-1. Register Source-Block Dot Product of Two Signed Word Operands With Doubleword Accumulation1

NOTES:
1. For illustration purposes, one source-block dot product instance is shown out of the four.

b1 b0 b1 b0

c1 c0

c1=c1+a2*b0+a3*b1 c0=c0+a0*b0+a1*b1

a3 a2 a1 a0

16b 16b 16b 16b

32b32b

32b 32b

VP4DPWSSD—Dot Product of Signed Words With Dword Accumulation (4-Iterations)

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-19

Operation

src_reg_id is the 5 bit index of the vector register specified in the instruction as the src1 register.

VP4DPWSSD dest, src1, src2
(KL,VL) = (16,512)
N := 4

ORIGDEST := DEST
src_base := src_reg_id & ~ (N-1) // for src1 operand

FOR i := 0 to KL-1:
IF k1[i] or *no writemask*:

FOR m := 0 to N-1:
t := SRC2.dword[m]
p1dword := reg[src_base+m].word[2*i] * t.word[0]
p2dword := reg[src_base+m].word[2*i+1] * t.word[1]
DEST.dword[i] := DEST.dword[i] + p1dword + p2dword

ELSE IF *zeroing*:
DEST.dword[i] := 0

ELSE
DEST.dword[i] := ORIGDEST.dword[i]

DEST[MAX_VL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalent

VP4DPWSSD __m512i _mm512_4dpwssd_epi32(__m512i, __m512ix4, __m128i *);
VP4DPWSSD __m512i _mm512_mask_4dpwssd_epi32(__m512i, __mmask16, __m512ix4, __m128i *);
VP4DPWSSD __m512i _mm512_maskz_4dpwssd_epi32(__mmask16, __m512i, __m512ix4, __m128i *);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Type E4; additionally:
#UD If the EVEX broadcast bit is set to 1.
#UD If the MODRM.mod = 0b11.

VRCP28PD—Approximation to the Reciprocal of Packed Double Precision Floating-Point Values With Less Than 2^-28 Relative Error

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-20

VRCP28PD—Approximation to the Reciprocal of Packed Double Precision Floating-Point Values
With Less Than 2^-28 Relative Error

Instruction Operand Encoding

Description

Computes the reciprocal approximation of the float64 values in the source operand (the second operand) and store
the results to the destination operand (the first operand). The approximate reciprocal is evaluated with less than
2^-28 of maximum relative error.
Denormal input values are treated as zeros and do not signal #DE, irrespective of MXCSR.DAZ. Denormal results
are flushed to zeros and do not signal #UE, irrespective of MXCSR.FTZ.
If any source element is NaN, the quietized NaN source value is returned for that element. If any source element is
±∞, ±0.0 is returned for that element. Also, if any source element is ±0.0, ±∞ is returned for that element.
The source operand is a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 64-bit
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
A numerically exact implementation of VRCP28xx can be found at https://software.intel.com/en-us/articles/refer-
ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRCP28PD (EVEX Encoded Versions)
(KL, VL) = (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+63:i] := RCP_28_DP(1.0/SRC[63:0]);
ELSE DEST[i+63:i] := RCP_28_DP(1.0/SRC[i+63:i]);

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI;

FI;
ENDFOR;

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.512.66.0F38.W1 CA /r
VRCP28PD zmm1 {k1}{z},
zmm2/m512/m64bcst {sae}

A V/V AVX512ER Computes the approximate reciprocals (< 2^-28 relative error)
of the packed double precision floating-point values in
zmm2/m512/m64bcst and stores the results in zmm1. Under
writemask.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

VRCP28PD—Approximation to the Reciprocal of Packed Double Precision Floating-Point Values With Less Than 2^-28 Relative Error

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-21

Intel C/C++ Compiler Intrinsic Equivalent

VRCP28PD __m512d _mm512_rcp28_round_pd (__m512d a, int sae);
VRCP28PD __m512d _mm512_mask_rcp28_round_pd(__m512d a, __mmask8 m, __m512d b, int sae);
VRCP28PD __m512d _mm512_maskz_rcp28_round_pd(__mmask8 m, __m512d b, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero.

Other Exceptions

See Table 2-48, “Type E2 Class Exception Conditions.”

Table 8-3. VRCP28PD Special Cases

Input Value Result Value Comments

NAN QNAN(input) If (SRC = SNaN) then #I

0 ≤ X < 2-1022 INF Positive input denormal or zero; #Z

-2-1022 < X ≤ -0 -INF Negative input denormal or zero; #Z

X > 21022 +0.0f

X < -21022 -0.0f

X = +∞ +0.0f

X = -∞ -0.0f

X = 2-n 2n Exact result (unless input/output is a denormal)

X = -2-n -2n Exact result (unless input/output is a denormal)

VRCP28SD—Approximation to the Reciprocal of Scalar Double Precision Floating-Point Value With Less Than 2^-28 Relative Error

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-22

VRCP28SD—Approximation to the Reciprocal of Scalar Double Precision Floating-Point Value
With Less Than 2^-28 Relative Error

Instruction Operand Encoding

Description

Computes the reciprocal approximation of the low float64 value in the second source operand (the third operand)
and store the result to the destination operand (the first operand). The approximate reciprocal is evaluated with
less than 2^-28 of maximum relative error. The result is written into the low float64 element of the destination
operand according to the writemask k1. Bits 127:64 of the destination is copied from the corresponding bits of the
first source operand (the second operand).
A denormal input value is treated as zero and does not signal #DE, irrespective of MXCSR.DAZ. A denormal result
is flushed to zero and does not signal #UE, irrespective of MXCSR.FTZ.
If any source element is NaN, the quietized NaN source value is returned for that element. If any source element is
±∞, ±0.0 is returned for that element. Also, if any source element is ±0.0, ±∞ is returned for that element.
The first source operand is an XMM register. The second source operand is an XMM register or a 64-bit memory
location. The destination operand is a XMM register, conditionally updated using writemask k1.
A numerically exact implementation of VRCP28xx can be found at https://software.intel.com/en-us/articles/refer-
ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRCP28SD ((EVEX Encoded Versions)
IF k1[0] OR *no writemask* THEN

DEST[63: 0] := RCP_28_DP(1.0/SRC2[63: 0]);
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[63: 0] remains unchanged*
ELSE ; zeroing-masking

DEST[63: 0] := 0
FI;

FI;
ENDFOR;
DEST[127:64] := SRC1[127: 64]
DEST[MAXVL-1:128] := 0

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.LLIG.66.0F38.W1 CB /r
VRCP28SD xmm1 {k1}{z}, xmm2,
xmm3/m64 {sae}

A V/V AVX512ER Computes the approximate reciprocal (< 2^-28 relative
error) of the scalar double precision floating-point value in
xmm3/m64 and stores the results in xmm1. Under
writemask. Also, upper double precision floating-point
value (bits[127:64]) from xmm2 is copied to
xmm1[127:64].

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

VRCP28SD—Approximation to the Reciprocal of Scalar Double Precision Floating-Point Value With Less Than 2^-28 Relative Error

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-23

Intel C/C++ Compiler Intrinsic Equivalent

VRCP28SD __m128d _mm_rcp28_round_sd (__m128d a, __m128d b, int sae);
VRCP28SD __m128d _mm_mask_rcp28_round_sd(__m128d s, __mmask8 m, __m128d a, __m128d b, int sae);
VRCP28SD __m128d _mm_maskz_rcp28_round_sd(__mmask8 m, __m128d a, __m128d b, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero.

Other Exceptions

See Table 2-49, “Type E3 Class Exception Conditions.”

Table 8-4. VRCP28SD Special Cases

Input Value Result Value Comments

NAN QNAN(input) If (SRC = SNaN) then #I

0 ≤ X < 2-1022 INF Positive input denormal or zero; #Z

-2-1022 < X ≤ -0 -INF Negative input denormal or zero; #Z

X > 21022 +0.0f

X < -21022 -0.0f

X = +∞ +0.0f

X = -∞ -0.0f

X = 2-n 2n Exact result (unless input/output is a denormal)

X = -2-n -2n Exact result (unless input/output is a denormal)

VRCP28PS—Approximation to the Reciprocal of Packed Single Precision Floating-Point Values With Less Than 2^-28 Relative Error

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-24

VRCP28PS—Approximation to the Reciprocal of Packed Single Precision Floating-Point Values
With Less Than 2^-28 Relative Error

Instruction Operand Encoding

Description

Computes the reciprocal approximation of the float32 values in the source operand (the second operand) and store
the results to the destination operand (the first operand) using the writemask k1. The approximate reciprocal is
evaluated with less than 2^-28 of maximum relative error prior to final rounding. The final results are rounded to
< 2^-23 relative error before written to the destination.
Denormal input values are treated as zeros and do not signal #DE, irrespective of MXCSR.DAZ. Denormal results
are flushed to zeros and do not signal #UE, irrespective of MXCSR.FTZ.
If any source element is NaN, the quietized NaN source value is returned for that element. If any source element is
±∞, ±0.0 is returned for that element. Also, if any source element is ±0.0, ±∞ is returned for that element.
The source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
A numerically exact implementation of VRCP28xx can be found at https://software.intel.com/en-us/articles/refer-
ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRCP28PS (EVEX Encoded Versions)
(KL, VL) = (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+31:i] := RCP_28_SP(1.0/SRC[31:0]);
ELSE DEST[i+31:i] := RCP_28_SP(1.0/SRC[i+31:i]);

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI;

FI;
ENDFOR;

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.512.66.0F38.W0 CA /r
VRCP28PS zmm1 {k1}{z},
zmm2/m512/m32bcst {sae}

A V/V AVX512ER Computes the approximate reciprocals (< 2^-28 relative
error) of the packed single precision floating-point values in
zmm2/m512/m32bcst and stores the results in zmm1. Under
writemask.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

VRCP28PS—Approximation to the Reciprocal of Packed Single Precision Floating-Point Values With Less Than 2^-28 Relative Error

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-25

Intel C/C++ Compiler Intrinsic Equivalent

VRCP28PS _mm512_rcp28_round_ps (__m512 a, int sae);
VRCP28PS __m512 _mm512_mask_rcp28_round_ps(__m512 s, __mmask16 m, __m512 a, int sae);
VRCP28PS __m512 _mm512_maskz_rcp28_round_ps(__mmask16 m, __m512 a, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero.

Other Exceptions

See Table 2-48, “Type E2 Class Exception Conditions.”

Table 8-5. VRCP28PS Special Cases

Input Value Result Value Comments

NAN QNAN(input) If (SRC = SNaN) then #I

0 ≤ X < 2-126 INF Positive input denormal or zero; #Z

-2-126 < X ≤ -0 -INF Negative input denormal or zero; #Z

X > 2126 +0.0f

X < -2126 -0.0f

X = +∞ +0.0f

X = -∞ -0.0f

X = 2-n 2n Exact result (unless input/output is a denormal)

X = -2-n -2n Exact result (unless input/output is a denormal)

VRCP28SS—Approximation to the Reciprocal of Scalar Single Precision Floating-Point Value With Less Than 2^-28 Relative Error

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-26

VRCP28SS—Approximation to the Reciprocal of Scalar Single Precision Floating-Point Value
With Less Than 2^-28 Relative Error

Instruction Operand Encoding

Description

Computes the reciprocal approximation of the low float32 value in the second source operand (the third operand)
and store the result to the destination operand (the first operand). The approximate reciprocal is evaluated with
less than 2^-28 of maximum relative error prior to final rounding. The final result is rounded to < 2^-23 relative
error before written into the low float32 element of the destination according to writemask k1. Bits 127:32 of the
destination is copied from the corresponding bits of the first source operand (the second operand).

A denormal input value is treated as zero and does not signal #DE, irrespective of MXCSR.DAZ. A denormal result
is flushed to zero and does not signal #UE, irrespective of MXCSR.FTZ.
If any source element is NaN, the quietized NaN source value is returned for that element. If any source element is
±∞, ±0.0 is returned for that element. Also, if any source element is ±0.0, ±∞ is returned for that element.
The first source operand is an XMM register. The second source operand is an XMM register or a 32-bit memory
location. The destination operand is a XMM register, conditionally updated using writemask k1.
A numerically exact implementation of VRCP28xx can be found at https://software.intel.com/en-us/articles/refer-
ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRCP28SS ((EVEX Encoded Versions)
IF k1[0] OR *no writemask* THEN

DEST[31: 0] := RCP_28_SP(1.0/SRC2[31: 0]);
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[31: 0] remains unchanged*
ELSE ; zeroing-masking

DEST[31: 0] := 0
FI;

FI;
ENDFOR;
DEST[127:32] := SRC1[127: 32]
DEST[MAXVL-1:128] := 0

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.LLIG.66.0F38.W0 CB /r
VRCP28SS xmm1 {k1}{z},
xmm2, xmm3/m32 {sae}

A V/V AVX512ER Computes the approximate reciprocal (< 2^-28 relative
error) of the scalar single precision floating-point value in
xmm3/m32 and stores the results in xmm1. Under
writemask. Also, upper 3 single precision floating-point
values (bits[127:32]) from xmm2 is copied to
xmm1[127:32].

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

VRCP28SS—Approximation to the Reciprocal of Scalar Single Precision Floating-Point Value With Less Than 2^-28 Relative Error

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-27

Intel C/C++ Compiler Intrinsic Equivalent

VRCP28SS __m128 _mm_rcp28_round_ss (__m128 a, __m128 b, int sae);
VRCP28SS __m128 _mm_mask_rcp28_round_ss(__m128 s, __mmask8 m, __m128 a, __m128 b, int sae);
VRCP28SS __m128 _mm_maskz_rcp28_round_ss(__mmask8 m, __m128 a, __m128 b, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero.

Other Exceptions

See Table 2-49, “Type E3 Class Exception Conditions.”

Table 8-6. VRCP28SS Special Cases

Input Value Result Value Comments

NAN QNAN(input) If (SRC = SNaN) then #I

0 ≤ X < 2-126 INF Positive input denormal or zero; #Z

-2-126 < X ≤ -0 -INF Negative input denormal or zero; #Z

X > 2126 +0.0f

X < -2126 -0.0f

X = +∞ +0.0f

X = -∞ -0.0f

X = 2-n 2n Exact result (unless input/output is a denormal)

X = -2-n -2n Exact result (unless input/output is a denormal)

VRSQRT28PD—Approximation to the Reciprocal Square Root of Packed Double Precision Floating-Point Values With Less Than 2^-28

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-28

VRSQRT28PD—Approximation to the Reciprocal Square Root of Packed Double Precision
Floating-Point Values With Less Than 2^-28 Relative Error

Instruction Operand Encoding

Description

Computes the reciprocal square root of the float64 values in the source operand (the second operand) and store
the results to the destination operand (the first operand). The approximate reciprocal is evaluated with less than
2^-28 of maximum relative error.
If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero)
source numbers, as well as -∞, return the canonical NaN and set the Invalid Flag (#I).
A value of -0 must return -∞ and set the DivByZero flags (#Z). Negative numbers should return NaN and set the
Invalid flag (#I). Note however that the instruction flush input denormals to zero of the same sign, so negative
denormals return -∞ and set the DivByZero flag.
The source operand is a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 64-bit
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
A numerically exact implementation of VRSQRT28xx can be found at https://software.intel.com/en-us/arti-
cles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRSQRT28PD (EVEX Encoded Versions)
(KL, VL) = (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+63:i] := (1.0/ SQRT(SRC[63:0]));
ELSE DEST[i+63:i] := (1.0/ SQRT(SRC[i+63:i]));

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] := 0
FI;

FI;
ENDFOR;

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.512.66.0F38.W1 CC /r
VRSQRT28PD zmm1 {k1}{z},
zmm2/m512/m64bcst {sae}

A V/V AVX512ER Computes approximations to the Reciprocal square root (<2^-
28 relative error) of the packed double precision floating-point
values from zmm2/m512/m64bcst and stores result in
zmm1with writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

VRSQRT28PD—Approximation to the Reciprocal Square Root of Packed Double Precision Floating-Point Values With Less Than 2^-28

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-29

Intel C/C++ Compiler Intrinsic Equivalent

VRSQRT28PD __m512d _mm512_rsqrt28_round_pd(__m512d a, int sae);
VRSQRT28PD __m512d _mm512_mask_rsqrt28_round_pd(__m512d s, __mmask8 m,__m512d a, int sae);
VRSQRT28PD __m512d _mm512_maskz_rsqrt28_round_pd(__mmask8 m,__m512d a, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero.

Other Exceptions

See Table 2-48, “Type E2 Class Exception Conditions.”

Table 8-7. VRSQRT28PD Special Cases

Input Value Result Value Comments

NAN QNAN(input) If (SRC = SNaN) then #I

X = 2-2n 2n

X < 0 QNaN_Indefinite Including -INF

X = -0 or negative denormal -INF #Z

X = +0 or positive denormal +INF #Z

X = +INF +0

VRSQRT28SD—Approximation to the Reciprocal Square Root of Scalar Double Precision Floating-Point Value With Less Than 2^-28

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-30

VRSQRT28SD—Approximation to the Reciprocal Square Root of Scalar Double Precision
Floating-Point Value With Less Than 2^-28 Relative Error

Instruction Operand Encoding

Description

Computes the reciprocal square root of the low float64 value in the second source operand (the third operand) and
store the result to the destination operand (the first operand). The approximate reciprocal square root is evaluated
with less than 2^-28 of maximum relative error. The result is written into the low float64 element of xmm1
according to the writemask k1. Bits 127:64 of the destination is copied from the corresponding bits of the first source operand
(the second operand).

If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero)
source numbers, as well as -∞, return the canonical NaN and set the Invalid Flag (#I).
A value of -0 must return -∞ and set the DivByZero flags (#Z). Negative numbers should return NaN and set the
Invalid flag (#I). Note however that the instruction flush input denormals to zero of the same sign, so negative
denormals return -∞ and set the DivByZero flag.
The first source operand is an XMM register. The second source operand is an XMM register or a 64-bit memory
location. The destination operand is a XMM register.
A numerically exact implementation of VRSQRT28xx can be found at https://software.intel.com/en-us/arti-
cles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRSQRT28SD (EVEX Encoded Versions)
IF k1[0] OR *no writemask* THEN

 DEST[63: 0] := (1.0/ SQRT(SRC[63: 0]));
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[63: 0] remains unchanged*
ELSE ; zeroing-masking

DEST[63: 0] := 0
FI;

FI;
ENDFOR;
DEST[127:64] := SRC1[127: 64]
DEST[MAXVL-1:128] := 0

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.LLIG.66.0F38.W1 CD /r
VRSQRT28SD xmm1 {k1}{z},
xmm2, xmm3/m64 {sae}

A V/V AVX512ER Computes approximate reciprocal square root (<2^-28
relative error) of the scalar double precision floating-point
value from xmm3/m64 and stores result in xmm1with
writemask k1. Also, upper double precision floating-point
value (bits[127:64]) from xmm2 is copied to
xmm1[127:64].

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

VRSQRT28SD—Approximation to the Reciprocal Square Root of Scalar Double Precision Floating-Point Value With Less Than 2^-28

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-31

Intel C/C++ Compiler Intrinsic Equivalent

VRSQRT28SD __m128d _mm_rsqrt28_round_sd(__m128d a, __m128d b, int rounding);
VRSQRT28SD __m128d _mm_mask_rsqrt28_round_sd(__m128d s, __mmask8 m,__m128d a, __m128d b, int rounding);
VRSQRT28SD __m128d _mm_maskz_rsqrt28_round_sd(__mmask8 m,__m128d a, __m128d b, int rounding);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero.

Other Exceptions

See Table 2-49, “Type E3 Class Exception Conditions.”

Table 8-8. VRSQRT28SD Special Cases

Input Value Result Value Comments

NAN QNAN(input) If (SRC = SNaN) then #I

X = 2-2n 2n

X < 0 QNaN_Indefinite Including -INF

X = -0 or negative denormal -INF #Z

X = +0 or positive denormal +INF #Z

X = +INF +0

VRSQRT28PS—Approximation to the Reciprocal Square Root of Packed Single Precision Floating-Point Values With Less Than 2^-28

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-32

VRSQRT28PS—Approximation to the Reciprocal Square Root of Packed Single Precision
Floating-Point Values With Less Than 2^-28 Relative Error

Instruction Operand Encoding

Description

Computes the reciprocal square root of the float32 values in the source operand (the second operand) and store
the results to the destination operand (the first operand). The approximate reciprocal is evaluated with less than
2^-28 of maximum relative error prior to final rounding. The final results is rounded to < 2^-23 relative error
before written to the destination.
If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero)
source numbers, as well as -∞, return the canonical NaN and set the Invalid Flag (#I).
A value of -0 must return -∞ and set the DivByZero flags (#Z). Negative numbers should return NaN and set the
Invalid flag (#I). Note however that the instruction flush input denormals to zero of the same sign, so negative
denormals return -∞ and set the DivByZero flag.
The source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
A numerically exact implementation of VRSQRT28xx can be found at https://software.intel.com/en-us/arti-
cles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRSQRT28PS (EVEX Encoded Versions)
(KL, VL) = (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+31:i] := (1.0/ SQRT(SRC[31:0]));
ELSE DEST[i+31:i] := (1.0/ SQRT(SRC[i+31:i]));

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] := 0
FI;

FI;
ENDFOR;

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.512.66.0F38.W0 CC /r
VRSQRT28PS zmm1 {k1}{z},
zmm2/m512/m32bcst {sae}

A V/V AVX512ER Computes approximations to the Reciprocal square root
(<2^-28 relative error) of the packed single precision
floating-point values from zmm2/m512/m32bcst and stores
result in zmm1with writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) N/A N/A

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

VRSQRT28PS—Approximation to the Reciprocal Square Root of Packed Single Precision Floating-Point Values With Less Than 2^-28

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-33

Intel C/C++ Compiler Intrinsic Equivalent

VRSQRT28PS __m512 _mm512_rsqrt28_round_ps(__m512 a, int sae);
VRSQRT28PS __m512 _mm512_mask_rsqrt28_round_ps(__m512 s, __mmask16 m,__m512 a, int sae);
VRSQRT28PS __m512 _mm512_maskz_rsqrt28_round_ps(__mmask16 m,__m512 a, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero.

Other Exceptions

See Table 2-48, “Type E2 Class Exception Conditions.”

Table 8-9. VRSQRT28PS Special Cases

Input Value Result Value Comments

NAN QNAN(input) If (SRC = SNaN) then #I

X = 2-2n 2n

X < 0 QNaN_Indefinite Including -INF

X = -0 or negative denormal -INF #Z

X = +0 or positive denormal +INF #Z

X = +INF +0

VRSQRT28SS—Approximation to the Reciprocal Square Root of Scalar Single Precision Floating-Point Value With Less Than 2^-28 Rel-

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-34

VRSQRT28SS—Approximation to the Reciprocal Square Root of Scalar Single Precision Floating-
Point Value With Less Than 2^-28 Relative Error

Instruction Operand Encoding

Description

Computes the reciprocal square root of the low float32 value in the second source operand (the third operand) and
store the result to the destination operand (the first operand). The approximate reciprocal square root is evaluated
with less than 2^-28 of maximum relative error prior to final rounding. The final result is rounded to < 2^-23 rela-
tive error before written to the low float32 element of the destination according to the writemask k1. Bits 127:32 of
the destination is copied from the corresponding bits of the first source operand (the second operand).

If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero)
source numbers, as well as -∞, return the canonical NaN and set the Invalid Flag (#I).
A value of -0 must return -∞ and set the DivByZero flags (#Z). Negative numbers should return NaN and set the
Invalid flag (#I). Note however that the instruction flush input denormals to zero of the same sign, so negative
denormals return -∞ and set the DivByZero flag.
The first source operand is an XMM register. The second source operand is an XMM register or a 32-bit memory
location. The destination operand is a XMM register.
A numerically exact implementation of VRSQRT28xx can be found at https://software.intel.com/en-us/arti-
cles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRSQRT28SS (EVEX Encoded Versions)
IF k1[0] OR *no writemask* THEN

 DEST[31: 0] := (1.0/ SQRT(SRC[31: 0]));
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[31: 0] remains unchanged*
ELSE ; zeroing-masking

DEST[31: 0] := 0
FI;

FI;
ENDFOR;
DEST[127:32] := SRC1[127: 32]
DEST[MAXVL-1:128] := 0

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.LLIG.66.0F38.W0 CD /r
VRSQRT28SS xmm1 {k1}{z},
xmm2, xmm3/m32 {sae}

A V/V AVX512ER Computes approximate reciprocal square root (<2^-28
relative error) of the scalar single precision floating-point
value from xmm3/m32 and stores result in xmm1with
writemask k1. Also, upper 3 single precision floating-point
value (bits[127:32]) from xmm2 is copied to
xmm1[127:32].

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

VRSQRT28SS—Approximation to the Reciprocal Square Root of Scalar Single Precision Floating-Point Value With Less Than 2^-28 Rel-

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-35

Intel C/C++ Compiler Intrinsic Equivalent

VRSQRT28SS __m128 _mm_rsqrt28_round_ss(__m128 a, __m128 b, int rounding);
VRSQRT28SS __m128 _mm_mask_rsqrt28_round_ss(__m128 s, __mmask8 m,__m128 a,__m128 b, int rounding);
VRSQRT28SS __m128 _mm_maskz_rsqrt28_round_ss(__mmask8 m,__m128 a,__m128 b, int rounding);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero.

Other Exceptions

See Table 2-49, “Type E3 Class Exception Conditions.”

Table 8-10. VRSQRT28SS Special Cases

Input Value Result Value Comments

NAN QNAN(input) If (SRC = SNaN) then #I

X = 2-2n 2n

X < 0 QNaN_Indefinite Including -INF

X = -0 or negative denormal -INF #Z

X = +0 or positive denormal +INF #Z

X = +INF +0

VSCATTERPF0DPS/VSCATTERPF0QPS/VSCATTERPF0DPD/VSCATTERPF0QPD—Sparse Prefetch Packed SP/DP Data Values with

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-36

VSCATTERPF0DPS/VSCATTERPF0QPS/VSCATTERPF0DPD/VSCATTERPF0QPD—Sparse Prefetch
Packed SP/DP Data Values with Signed Dword, Signed Qword Indices Using T0 Hint With Intent
to Write

Instruction Operand Encoding

Description

The instruction conditionally prefetches up to sixteen 32-bit or eight 64-bit integer byte data elements. The
elements are specified via the VSIB (i.e., the index register is an zmm, holding packed indices). Elements will only
be prefetched if their corresponding mask bit is one.
cache lines will be brought into exclusive state (RFO) specified by a locality hint (T0):
• T0 (temporal data)—prefetch data into the first level cache.
[PS data] For dword indices, the instruction will prefetch sixteen memory locations. For qword indices, the instruc-
tion will prefetch eight values.
[PD data] For dword and qword indices, the instruction will prefetch eight memory locations.
Note that:
(1) The prefetches may happen in any order (or not at all). The instruction is a hint.
(2) The mask is left unchanged.
(3) Not valid with 16-bit effective addresses. Will deliver a #UD fault.
(4) No FP nor memory faults may be produced by this instruction.
(5) Prefetches do not handle cache line splits
(6) A #UD is signaled if the memory operand is encoded without the SIB byte.

Operation

BASE_ADDR stands for the memory operand base address (a GPR); may not exist.
VINDEX stands for the memory operand vector of indices (a vector register).
SCALE stands for the memory operand scalar (1, 2, 4 or 8).
DISP is the optional 1, 2 or 4 byte displacement.
PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘mem’ into the cache level specified by ‘Level’; a request
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a
hint for the processor and may be skipped depending on implementation.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.512.66.0F38.W0 C6 /5 /vsib
VSCATTERPF0DPS vm32z {k1}

A V/V AVX512PF Using signed dword indices, prefetch sparse byte
memory locations containing single precision data using
writemask k1 and T0 hint with intent to write.

EVEX.512.66.0F38.W0 C7 /5 /vsib
VSCATTERPF0QPS vm64z {k1}

A V/V AVX512PF Using signed qword indices, prefetch sparse byte
memory locations containing single precision data using
writemask k1 and T0 hint with intent to write.

EVEX.512.66.0F38.W1 C6 /5 /vsib
VSCATTERPF0DPD vm32y {k1}

A V/V AVX512PF Using signed dword indices, prefetch sparse byte
memory locations containing double precision data
using writemask k1 and T0 hint with intent to write.

EVEX.512.66.0F38.W1 C7 /5 /vsib
VSCATTERPF0QPD vm64z {k1}

A V/V AVX512PF Using signed qword indices, prefetch sparse byte
memory locations containing double precision data
using writemask k1 and T0 hint with intent to write.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

N/A N/A N/A

VSCATTERPF0DPS/VSCATTERPF0QPS/VSCATTERPF0DPD/VSCATTERPF0QPD—Sparse Prefetch Packed SP/DP Data Values with

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-37

VSCATTERPF0DPS (EVEX Encoded Version)
(KL, VL) = (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[i+31:i]) * SCALE + DISP], Level=0, RFO = 1)
FI;

ENDFOR

VSCATTERPF0DPD (EVEX Encoded Version)
(KL, VL) = (8, 512)
FOR j := 0 TO KL-1

i := j * 64
k := j * 32
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[k+31:k]) * SCALE + DISP], Level=0, RFO = 1)
FI;

ENDFOR

VSCATTERPF0QPS (EVEX Encoded Version)
(KL, VL) = (8, 256)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[i+63:i]) * SCALE + DISP], Level=0, RFO = 1)
FI;

ENDFOR

VSCATTERPF0QPD (EVEX Encoded Version)
(KL, VL) = (8, 512)
FOR j := 0 TO KL-1

i := j * 64
k := j * 64
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[k+63:k]) * SCALE + DISP], Level=0, RFO = 1)
FI;

ENDFOR

Intel C/C++ Compiler Intrinsic Equivalent

VSCATTERPF0DPD void _mm512_prefetch_i32scatter_pd(void *base, __m256i vdx, int scale, int hint);
VSCATTERPF0DPD void _mm512_mask_prefetch_i32scatter_pd(void *base, __mmask8 m, __m256i vdx, int scale, int hint);
VSCATTERPF0DPS void _mm512_prefetch_i32scatter_ps(void *base, __m512i vdx, int scale, int hint);
VSCATTERPF0DPS void _mm512_mask_prefetch_i32scatter_ps(void *base, __mmask16 m, __m512i vdx, int scale, int hint);
VSCATTERPF0QPD void _mm512_prefetch_i64scatter_pd(void * base, __m512i vdx, int scale, int hint);
VSCATTERPF0QPD void _mm512_mask_prefetch_i64scatter_pd(void * base, __mmask8 m, __m512i vdx, int scale, int hint);
VSCATTERPF0QPS void _mm512_prefetch_i64scatter_ps(void * base, __m512i vdx, int scale, int hint);
VSCATTERPF0QPS void _mm512_mask_prefetch_i64scatter_ps(void * base, __mmask8 m, __m512i vdx, int scale, int hint);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-64, “Type E12NP Class Exception Conditions.”

VSCATTERPF1DPS/VSCATTERPF1QPS/VSCATTERPF1DPD/VSCATTERPF1QPD—Sparse Prefetch Packed SP/DP Data Values With

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-38

VSCATTERPF1DPS/VSCATTERPF1QPS/VSCATTERPF1DPD/VSCATTERPF1QPD—Sparse Prefetch
Packed SP/DP Data Values With Signed Dword, Signed Qword Indices Using T1 Hint With Intent
to Write

Instruction Operand Encoding

Description

The instruction conditionally prefetches up to sixteen 32-bit or eight 64-bit integer byte data elements. The
elements are specified via the VSIB (i.e., the index register is an zmm, holding packed indices). Elements will only
be prefetched if their corresponding mask bit is one.
cache lines will be brought into exclusive state (RFO) specified by a locality hint (T1):
• T1 (temporal data)—prefetch data into the second level cache.
[PS data] For dword indices, the instruction will prefetch sixteen memory locations. For qword indices, the instruc-
tion will prefetch eight values.
[PD data] For dword and qword indices, the instruction will prefetch eight memory locations.
Note that:
(1) The prefetches may happen in any order (or not at all). The instruction is a hint.
(2) The mask is left unchanged.
(3) Not valid with 16-bit effective addresses. Will deliver a #UD fault.
(4) No FP nor memory faults may be produced by this instruction.
(5) Prefetches do not handle cache line splits
(6) A #UD is signaled if the memory operand is encoded without the SIB byte.

Operation

BASE_ADDR stands for the memory operand base address (a GPR); may not exist.
VINDEX stands for the memory operand vector of indices (a vector register).
SCALE stands for the memory operand scalar (1, 2, 4 or 8).
DISP is the optional 1, 2 or 4 byte displacement.
PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘mem’ into the cache level specified by ‘Level’; a request
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a
hint for the processor and may be skipped depending on implementation.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.512.66.0F38.W0 C6 /6 /vsib
VSCATTERPF1DPS vm32z {k1}

A V/V AVX512PF Using signed dword indices, prefetch sparse byte memory
locations containing single precision data using writemask
k1 and T1 hint with intent to write.

EVEX.512.66.0F38.W0 C7 /6 /vsib
VSCATTERPF1QPS vm64z {k1}

A V/V AVX512PF Using signed qword indices, prefetch sparse byte memory
locations containing single precision data using writemask
k1 and T1 hint with intent to write.

EVEX.512.66.0F38.W1 C6 /6 /vsib
VSCATTERPF1DPD vm32y {k1}

A V/V AVX512PF Using signed dword indices, prefetch sparse byte memory
locations containing double precision data using
writemask k1 and T1 hint with intent to write.

EVEX.512.66.0F38.W1 C7 /6 /vsib
VSCATTERPF1QPD vm64z {k1}

A V/V AVX512PF Using signed qword indices, prefetch sparse byte memory
locations containing double precision data using
writemask k1 and T1 hint with intent to write.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

N/A N/A N/A

VSCATTERPF1DPS/VSCATTERPF1QPS/VSCATTERPF1DPD/VSCATTERPF1QPD—Sparse Prefetch Packed SP/DP Data Values With

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

Vol. 2D 8-39

VSCATTERPF1DPS (EVEX Encoded Version)
(KL, VL) = (16, 512)
FOR j := 0 TO KL-1

i := j * 32
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[i+31:i]) * SCALE + DISP], Level=1, RFO = 1)
FI;

ENDFOR

VSCATTERPF1DPD (EVEX Encoded Version)
(KL, VL) = (8, 512)
FOR j := 0 TO KL-1

i := j * 64
k := j * 32
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[k+31:k]) * SCALE + DISP], Level=1, RFO = 1)
FI;

ENDFOR

VSCATTERPF1QPS (EVEX Encoded Version)
(KL, VL) = (8, 512)
FOR j := 0 TO KL-1

i := j * 64
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[i+63:i]) * SCALE + DISP], Level=1, RFO = 1)
FI;

ENDFOR

VSCATTERPF1QPD (EVEX Encoded Version)
(KL, VL) = (8, 512)
FOR j := 0 TO KL-1

i := j * 64
k := j * 64
IF k1[j]

Prefetch([BASE_ADDR + SignExtend(VINDEX[k+63:k]) * SCALE + DISP], Level=1, RFO = 1)
FI;

ENDFOR

Intel C/C++ Compiler Intrinsic Equivalent

VSCATTERPF1DPD void _mm512_prefetch_i32scatter_pd(void *base, __m256i vdx, int scale, int hint);
VSCATTERPF1DPD void _mm512_mask_prefetch_i32scatter_pd(void *base, __mmask8 m, __m256i vdx, int scale, int hint);
VSCATTERPF1DPS void _mm512_prefetch_i32scatter_ps(void *base, __m512i vdx, int scale, int hint);
VSCATTERPF1DPS void _mm512_mask_prefetch_i32scatter_ps(void *base, __mmask16 m, __m512i vdx, int scale, int hint);
VSCATTERPF1QPD void _mm512_prefetch_i64scatter_pd(void * base, __m512i vdx, int scale, int hint);
VSCATTERPF1QPD void _mm512_mask_prefetch_i64scatter_pd(void * base, __mmask8 m, __m512i vdx, int scale, int hint);
VSCATTERPF1QPS void _mm512_prefetch_i64scatter_ps(void *base, __m512i vdx, int scale, int hint);
VSCATTERPF1QPS void _mm512_mask_prefetch_i64scatter_ps(void *base, __mmask8 m, __m512i vdx, int scale, int hint);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 2-64, “Type E12NP Class Exception Conditions.”

Vol. 2D A-1

APPENDIX A
OPCODE MAP

Use the opcode tables in this chapter to interpret IA-32 and Intel 64 architecture object code. Instructions are
divided into encoding groups:
• 1-byte, 2-byte and 3-byte opcode encodings are used to encode integer, system, MMX technology,

SSE/SSE2/SSE3/SSSE3/SSE4, and VMX instructions. Maps for these instructions are given in Table A-2
through Table A-6.

• Escape opcodes (in the format: ESC character, opcode, ModR/M byte) are used for floating-point instructions.
The maps for these instructions are provided in Table A-7 through Table A-22.

NOTE
All blanks in opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or blank opcodes.

A.1 USING OPCODE TABLES
Tables in this appendix list opcodes of instructions (including required instruction prefixes, opcode extensions in
associated ModR/M byte). Blank cells in the tables indicate opcodes that are reserved or undefined. Cells marked
“Reserved-NOP” are also reserved but may behave as NOP on certain processors. Software should not use opcodes
corresponding blank cells or cells marked “Reserved-NOP” nor depend on the current behavior of those opcodes.

The opcode map tables are organized by hex values of the upper and lower 4 bits of an opcode byte. For 1-byte
encodings (Table A-2), use the four high-order bits of an opcode to index a row of the opcode table; use the four
low-order bits to index a column of the table. For 2-byte opcodes beginning with 0FH (Table A-3), skip any instruc-
tion prefixes, the 0FH byte (0FH may be preceded by 66H, F2H, or F3H) and use the upper and lower 4-bit values
of the next opcode byte to index table rows and columns. Similarly, for 3-byte opcodes beginning with 0F38H or
0F3AH (Table A-4), skip any instruction prefixes, 0F38H or 0F3AH and use the upper and lower 4-bit values of the
third opcode byte to index table rows and columns. See Section A.2.4, “Opcode Look-up Examples for One, Two,
and Three-Byte Opcodes.”

When a ModR/M byte provides opcode extensions, this information qualifies opcode execution. For information on
how an opcode extension in the ModR/M byte modifies the opcode map in Table A-2 and Table A-3, see Section A.4.

The escape (ESC) opcode tables for floating-point instructions identify the eight high order bits of opcodes at the
top of each page. See Section A.5. If the accompanying ModR/M byte is in the range of 00H-BFH, bits 3-5 (the top
row of the third table on each page) along with the reg bits of ModR/M determine the opcode. ModR/M bytes
outside the range of 00H-BFH are mapped by the bottom two tables on each page of the section.

A.2 KEY TO ABBREVIATIONS
Operands are identified by a two-character code of the form Zz. The first character, an uppercase letter, specifies
the addressing method; the second character, a lowercase letter, specifies the type of operand.

A.2.1 Codes for Addressing Method
The following abbreviations are used to document addressing methods:

A Direct address: the instruction has no ModR/M byte; the address of the operand is encoded in the instruc-
tion. No base register, index register, or scaling factor can be applied (for example, far JMP (EA)).

B The VEX.vvvv field of the VEX prefix selects a general purpose register.

A-2 Vol. 2D

OPCODE MAP

C The reg field of the ModR/M byte selects a control register (for example, MOV (0F20, 0F22)).

D The reg field of the ModR/M byte selects a debug register (for example,
MOV (0F21,0F23)).

E A ModR/M byte follows the opcode and specifies the operand. The operand is either a general-purpose
register or a memory address. If it is a memory address, the address is computed from a segment register
and any of the following values: a base register, an index register, a scaling factor, a displacement.

F EFLAGS/RFLAGS Register.

G The reg field of the ModR/M byte selects a general register (for example, AX (000)).

H The VEX.vvvv field of the VEX prefix selects a 128-bit XMM register or a 256-bit YMM register, determined
by operand type. For legacy SSE encodings this operand does not exist, changing the instruction to
destructive form.

I Immediate data: the operand value is encoded in subsequent bytes of the instruction.

J The instruction contains a relative offset to be added to the instruction pointer register (for example, JMP
(0E9), LOOP).

L The upper 4 bits of the 8-bit immediate selects a 128-bit XMM register or a 256-bit YMM register, deter-
mined by operand type. (the MSB is ignored in 32-bit mode)

M The ModR/M byte may refer only to memory (for example, BOUND, LES, LDS, LSS, LFS, LGS, CMPX-
CHG8B).

N The R/M field of the ModR/M byte selects a packed-quadword, MMX technology register.

O The instruction has no ModR/M byte. The offset of the operand is coded as a word or double word
(depending on address size attribute) in the instruction. No base register, index register, or scaling factor
can be applied (for example, MOV (A0–A3)).

P The reg field of the ModR/M byte selects a packed quadword MMX technology register.

Q A ModR/M byte follows the opcode and specifies the operand. The operand is either an MMX technology
register or a memory address. If it is a memory address, the address is computed from a segment register
and any of the following values: a base register, an index register, a scaling factor, and a displacement.

R The R/M field of the ModR/M byte may refer only to a general register (for example, MOV (0F20-0F23)).

S The reg field of the ModR/M byte selects a segment register (for example, MOV (8C,8E)).

U The R/M field of the ModR/M byte selects a 128-bit XMM register or a 256-bit YMM register, determined by
operand type.

V The reg field of the ModR/M byte selects a 128-bit XMM register or a 256-bit YMM register, determined by
operand type.

W A ModR/M byte follows the opcode and specifies the operand. The operand is either a 128-bit XMM register,
a 256-bit YMM register (determined by operand type), or a memory address. If it is a memory address, the
address is computed from a segment register and any of the following values: a base register, an index
register, a scaling factor, and a displacement.

X Memory addressed by the DS:rSI register pair (for example, MOVS, CMPS, OUTS, or LODS).

Y Memory addressed by the ES:rDI register pair (for example, MOVS, CMPS, INS, STOS, or SCAS).

A.2.2 Codes for Operand Type
The following abbreviations are used to document operand types:

a Two one-word operands in memory or two double-word operands in memory, depending on operand-size
attribute (used only by the BOUND instruction).

b Byte, regardless of operand-size attribute.

c Byte or word, depending on operand-size attribute.

d Doubleword, regardless of operand-size attribute.

Vol. 2D A-3

OPCODE MAP

dq Double-quadword, regardless of operand-size attribute.

p 32-bit, 48-bit, or 80-bit pointer, depending on operand-size attribute.

pd 128-bit or 256-bit packed double precision floating-point data.

pi Quadword MMX technology register (for example: mm0).

ps 128-bit or 256-bit packed single precision floating-point data.

q Quadword, regardless of operand-size attribute.

qq Quad-Quadword (256-bits), regardless of operand-size attribute.

s 6-byte or 10-byte pseudo-descriptor.

sd Scalar element of a 128-bit double precision floating data.

ss Scalar element of a 128-bit single precision floating data.

si Doubleword integer register (for example: eax).

v Word, doubleword or quadword (in 64-bit mode), depending on operand-size attribute.

w Word, regardless of operand-size attribute.

x dq or qq based on the operand-size attribute.

y Doubleword or quadword (in 64-bit mode), depending on operand-size attribute.

z Word for 16-bit operand-size or doubleword for 32 or 64-bit operand-size.

A.2.3 Register Codes
When an opcode requires a specific register as an operand, the register is identified by name (for example, AX, CL,
or ESI). The name indicates whether the register is 64, 32, 16, or 8 bits wide.

A register identifier of the form eXX or rXX is used when register width depends on the operand-size attribute. eXX
is used when 16 or 32-bit sizes are possible; rXX is used when 16, 32, or 64-bit sizes are possible. For example:
eAX indicates that the AX register is used when the operand-size attribute is 16 and the EAX register is used when
the operand-size attribute is 32. rAX can indicate AX, EAX or RAX.

When the REX.B bit is used to modify the register specified in the reg field of the opcode, this fact is indicated by
adding “/x” to the register name to indicate the additional possibility. For example, rCX/r9 is used to indicate that
the register could either be rCX or r9. Note that the size of r9 in this case is determined by the operand size attri-
bute (just as for rCX).

A.2.4 Opcode Look-up Examples for One, Two, and Three-Byte Opcodes
This section provides examples that demonstrate how opcode maps are used.

A.2.4.1 One-Byte Opcode Instructions
The opcode map for 1-byte opcodes is shown in Table A-2. The opcode map for 1-byte opcodes is arranged by row
(the least-significant 4 bits of the hexadecimal value) and column (the most-significant 4 bits of the hexadecimal
value). Each entry in the table lists one of the following types of opcodes:
• Instruction mnemonics and operand types using the notations listed in Section A.2
• Opcodes used as an instruction prefix

For each entry in the opcode map that corresponds to an instruction, the rules for interpreting the byte following
the primary opcode fall into one of the following cases:
• A ModR/M byte is required and is interpreted according to the abbreviations listed in Section A.1 and Chapter

2, “Instruction Format,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.
Operand types are listed according to notations listed in Section A.2.

A-4 Vol. 2D

OPCODE MAP

• A ModR/M byte is required and includes an opcode extension in the reg field in the ModR/M byte. Use Table A-6
when interpreting the ModR/M byte.

• Use of the ModR/M byte is reserved or undefined. This applies to entries that represent an instruction prefix or
entries for instructions without operands that use ModR/M (for example: 60H, PUSHA; 06H, PUSH ES).

Example A-1. Look-up Example for 1-Byte Opcodes

Opcode 030500000000H for an ADD instruction is interpreted using the 1-byte opcode map (Table A-2) as follows:
• The first digit (0) of the opcode indicates the table row and the second digit (3) indicates the table column. This

locates an opcode for ADD with two operands.
• The first operand (type Gv) indicates a general register that is a word or doubleword depending on the operand-

size attribute. The second operand (type Ev) indicates a ModR/M byte follows that specifies whether the
operand is a word or doubleword general-purpose register or a memory address.

• The ModR/M byte for this instruction is 05H, indicating that a 32-bit displacement follows (00000000H). The
reg/opcode portion of the ModR/M byte (bits 3-5) is 000, indicating the EAX register.

The instruction for this opcode is ADD EAX, mem_op, and the offset of mem_op is 00000000H.

Some 1- and 2-byte opcodes point to group numbers (shaded entries in the opcode map table). Group numbers
indicate that the instruction uses the reg/opcode bits in the ModR/M byte as an opcode extension (refer to Section
A.4).

A.2.4.2 Two-Byte Opcode Instructions
The two-byte opcode map shown in Table A-3 includes primary opcodes that are either two bytes or three bytes in
length. Primary opcodes that are 2 bytes in length begin with an escape opcode 0FH. The upper and lower four bits
of the second opcode byte are used to index a particular row and column in Table A-3.

Two-byte opcodes that are 3 bytes in length begin with a mandatory prefix (66H, F2H, or F3H) and the escape
opcode (0FH). The upper and lower four bits of the third byte are used to index a particular row and column in Table
A-3 (except when the second opcode byte is the 3-byte escape opcodes 38H or 3AH; in this situation refer to
Section A.2.4.3).

For each entry in the opcode map, the rules for interpreting the byte following the primary opcode fall into one of
the following cases:
• A ModR/M byte is required and is interpreted according to the abbreviations listed in Section A.1 and Chapter

2, “Instruction Format,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A. The
operand types are listed according to notations listed in Section A.2.

• A ModR/M byte is required and includes an opcode extension in the reg field in the ModR/M byte. Use Table A-6
when interpreting the ModR/M byte.

• Use of the ModR/M byte is reserved or undefined. This applies to entries that represent an instruction without
operands that are encoded using ModR/M (for example: 0F77H, EMMS).

Example A-2. Look-up Example for 2-Byte Opcodes

Look-up opcode 0FA4050000000003H for a SHLD instruction using Table A-3.
• The opcode is located in row A, column 4. The location indicates a SHLD instruction with operands Ev, Gv, and

Ib. Interpret the operands as follows:

— Ev: The ModR/M byte follows the opcode to specify a word or doubleword operand.

— Gv: The reg field of the ModR/M byte selects a general-purpose register.

— Ib: Immediate data is encoded in the subsequent byte of the instruction.
• The third byte is the ModR/M byte (05H). The mod and opcode/reg fields of ModR/M indicate that a 32-bit

displacement is used to locate the first operand in memory and eAX as the second operand.
• The next part of the opcode is the 32-bit displacement for the destination memory operand (00000000H). The

last byte stores immediate byte that provides the count of the shift (03H).

Vol. 2D A-5

OPCODE MAP

• By this breakdown, it has been shown that this opcode represents the instruction: SHLD DS:00000000H, EAX,
3.

A.2.4.3 Three-Byte Opcode Instructions
The three-byte opcode maps shown in Table A-4 and Table A-5 includes primary opcodes that are either 3 or 4
bytes in length. Primary opcodes that are 3 bytes in length begin with two escape bytes 0F38H or 0F3A. The upper
and lower four bits of the third opcode byte are used to index a particular row and column in Table A-4 or Table A-5.

Three-byte opcodes that are 4 bytes in length begin with a mandatory prefix (66H, F2H, or F3H) and two escape
bytes (0F38H or 0F3AH). The upper and lower four bits of the fourth byte are used to index a particular row and
column in Table A-4 or Table A-5.

For each entry in the opcode map, the rules for interpreting the byte following the primary opcode fall into the
following case:
• A ModR/M byte is required and is interpreted according to the abbreviations listed in A.1 and Chapter 2,

“Instruction Format,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A. The
operand types are listed according to notations listed in Section A.2.

Example A-3. Look-up Example for 3-Byte Opcodes

Look-up opcode 660F3A0FC108H for a PALIGNR instruction using Table A-5.
• 66H is a prefix and 0F3AH indicate to use Table A-5. The opcode is located in row 0, column F indicating a

PALIGNR instruction with operands Vdq, Wdq, and Ib. Interpret the operands as follows:

— Vdq: The reg field of the ModR/M byte selects a 128-bit XMM register.

— Wdq: The R/M field of the ModR/M byte selects either a 128-bit XMM register or memory location.

— Ib: Immediate data is encoded in the subsequent byte of the instruction.
• The next byte is the ModR/M byte (C1H). The reg field indicates that the first operand is XMM0. The mod shows

that the R/M field specifies a register and the R/M indicates that the second operand is XMM1.
• The last byte is the immediate byte (08H).
• By this breakdown, it has been shown that this opcode represents the instruction: PALIGNR XMM0, XMM1, 8.

A.2.4.4 VEX Prefix Instructions
Instructions that include a VEX prefix are organized relative to the 2-byte and 3-byte opcode maps, based on the
VEX.mmmmm field encoding of implied 0F, 0F38H, 0F3AH, respectively. Each entry in the opcode map of a VEX-
encoded instruction is based on the value of the opcode byte, similar to non-VEX-encoded instructions.

A VEX prefix includes several bit fields that encode implied 66H, F2H, F3H prefix functionality (VEX.pp) and
operand size/opcode information (VEX.L). See chapter 4 for details.

Opcode tables A2-A6 include both instructions with a VEX prefix and instructions without a VEX prefix. Many entries
are only made once, but represent both the VEX and non-VEX forms of the instruction. If the VEX prefix is present
all the operands are valid and the mnemonic is usually prefixed with a “v”. If the VEX prefix is not present the
VEX.vvvv operand is not available and the prefix “v” is dropped from the mnemonic.

A few instructions exist only in VEX form and these are marked with a superscript “v”.

Operand size of VEX prefix instructions can be determined by the operand type code. 128-bit vectors are indicated
by 'dq', 256-bit vectors are indicated by 'qq', and instructions with operands supporting either 128 or 256-bit,
determined by VEX.L, are indicated by 'x'. For example, the entry "VMOVUPD Vx,Wx" indicates both VEX.L=0 and
VEX.L=1 are supported.

A-6 Vol. 2D

OPCODE MAP

A.2.5 Superscripts Utilized in Opcode Tables
Table A-1 contains notes on particular encodings. These notes are indicated in the following opcode maps by super-
scripts. Gray cells indicate instruction groupings.

A.3 ONE, TWO, AND THREE-BYTE OPCODE MAPS
See Table A-2 through Table A-5 below. The tables are multiple page presentations. Rows and columns with
sequential relationships are placed on facing pages to make look-up tasks easier. Note that table footnotes are not
presented on each page. Table footnotes for each table are presented on the last page of the table.

Table A-1. Superscripts Utilized in Opcode Tables
Superscript
Symbol

Meaning of Symbol

1A Bits 5, 4, and 3 of ModR/M byte used as an opcode extension (refer to Section A.4, “Opcode Extensions For One-Byte
And Two-byte Opcodes”).

1B Use the 0F0B opcode (UD2 instruction), the 0FB9H opcode (UD1 instruction), or the 0FFFH opcode (UD0 instruction)
when deliberately trying to generate an invalid opcode exception (#UD).

1C Some instructions use the same two-byte opcode. If the instruction has variations, or the opcode represents
different instructions, the ModR/M byte will be used to differentiate the instruction. For the value of the ModR/M
byte needed to decode the instruction, see Table A-6.

i64 The instruction is invalid or not encodable in 64-bit mode. 40 through 4F (single-byte INC and DEC) are REX prefix
combinations when in 64-bit mode (use FE/FF Grp 4 and 5 for INC and DEC).

o64 Instruction is only available when in 64-bit mode.

d64 When in 64-bit mode, instruction defaults to 64-bit operand size and cannot encode 32-bit operand size.

f64 The operand size is forced to a 64-bit operand size when in 64-bit mode (prefixes that change operand size are
ignored for this instruction in 64-bit mode).

v VEX form only exists. There is no legacy SSE form of the instruction. For Integer GPR instructions it means VEX
prefix required.

v1 VEX128 & SSE forms only exist (no VEX256), when can’t be inferred from the data size.

Vol. 2D A-7

OPCODE MAP

Table A-2. One-byte Opcode Map: (00H — F7H) *

0 1 2 3 4 5 6 7

0 ADD PUSH
ESi64

POP
ESi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1 ADC PUSH
SSi64

POP
SSi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2 AND SEG=ES
(Prefix)

DAAi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3 XOR SEG=SS
(Prefix)

AAAi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4 INCi64 general register / REXo64 Prefixes

eAX
REX

eCX
REX.B

eDX
REX.X

eBX
REX.XB

eSP
REX.R

eBP
REX.RB

eSI
REX.RX

eDI
REX.RXB

5 PUSHd64 general register

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

6 PUSHAi64/
PUSHADi64

POPAi64/
POPADi64

BOUNDi64

Gv, Ma
ARPLi64

Ew, Gw
MOVSXDo64

Gv, Ev

SEG=FS
(Prefix)

SEG=GS
(Prefix)

Operand
Size

(Prefix)

Address
Size

(Prefix)

7 Jccf64, Jb - Short-displacement jump on condition

O NO B/NAE/C NB/AE/NC Z/E NZ/NE BE/NA NBE/A

8 Immediate Grp 11A TEST XCHG

Eb, Ib Ev, Iz Eb, Ibi64 Ev, Ib Eb, Gb Ev, Gv Eb, Gb Ev, Gv

9 NOP
PAUSE(F3)

XCHG r8, rAX

XCHG word, double-word or quad-word register with rAX

rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

A MOV MOVS/B
Yb, Xb

MOVS/W/D/Q
Yv, Xv

CMPS/B
Xb, Yb

CMPS/W/D
Xv, YvAL, Ob rAX, Ov Ob, AL Ov, rAX

B MOV immediate byte into byte register

AL/R8B, Ib CL/R9B, Ib DL/R10B, Ib BL/R11B, Ib AH/R12B, Ib CH/R13B, Ib DH/R14B, Ib BH/R15B, Ib

C Shift Grp 21A near RETf64

Iw
near RETf64 LESi64

Gz, Mp
VEX+2byte

LDSi64

Gz, Mp
VEX+1byte

Grp 111A - MOV

Eb, Ib Ev, Ib Eb, Ib Ev, Iz

D Shift Grp 21A AAMi64

Ib
AADi64

Ib
XLAT/
XLATB Eb, 1 Ev, 1 Eb, CL Ev, CL

E LOOPNEf64/
LOOPNZf64

Jb

LOOPEf64/
LOOPZf64

Jb

LOOPf64

Jb
JrCXZf64/

Jb
IN OUT

AL, Ib eAX, Ib Ib, AL Ib, eAX

F LOCK
(Prefix)

INT1 REPNE
XACQUIRE

(Prefix)

REP/REPE
XRELEASE

(Prefix)

HLT CMC Unary Grp 31A

Eb Ev

A-8 Vol. 2D

OPCODE MAP

Table A-2. One-byte Opcode Map: (08H — FFH) *

8 9 A B C D E F

0 OR PUSH
CSi64

2-byte
escape

(Table A-3) Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1 SBB PUSH
DSi64

POP
DSi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2 SUB SEG=CS
(Prefix)

DASi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3 CMP SEG=DS
(Prefix)

AASi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4 DECi64 general register / REXo64 Prefixes

eAX
REX.W

eCX
REX.WB

eDX
REX.WX

eBX
REX.WXB

eSP
REX.WR

eBP
REX.WRB

eSI
REX.WRX

eDI
REX.WRXB

5 POPd64 into general register

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

6 PUSHd64

Iz
IMUL

Gv, Ev, Iz
PUSHd64

Ib
IMUL

Gv, Ev, Ib
INS/
INSB

Yb, DX

INS/
INSW/
INSD

Yz, DX

OUTS/
OUTSB
DX, Xb

OUTS/
OUTSW/
OUTSD
DX, Xz

7 Jccf64, Jb- Short displacement jump on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

8 MOV MOV
Ev, Sw

LEA
Gv, M

MOV
Sw, Ew

Grp 1A1A POPd64

EvEb, Gb Ev, Gv Gb, Eb Gv, Ev

9 CBW/
CWDE/
CDQE

CWD/
CDQ/
CQO

far CALLi64

Ap
FWAIT/
WAIT

PUSHF/D/Q d64/
Fv

POPF/D/Q d64/
Fv

SAHF LAHF

A TEST STOS/B
Yb, AL

STOS/W/D/Q
Yv, rAX

LODS/B
AL, Xb

LODS/W/D/Q
rAX, Xv

SCAS/B
AL, Yb

SCAS/W/D/Q
rAX, YvAL, Ib rAX, Iz

B MOV immediate word or double into word, double, or quad register

rAX/r8, Iv rCX/r9, Iv rDX/r10, Iv rBX/r11, Iv rSP/r12, Iv rBP/r13, Iv rSI/r14, Iv rDI/r15 , Iv

C ENTER LEAVEd64 far RET far RET INT3 INT INTOi64 IRET/D/Q

Iw, Ib Iw Ib

D ESC (Escape to coprocessor instruction set)

E near CALLf64 JMP IN OUT

Jz nearf64

Jz
fari64

Ap
shortf64

Jb
AL, DX eAX, DX DX, AL DX, eAX

F CLC STC CLI STI CLD STD INC/DEC INC/DEC

Grp 41A Grp 51A

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Vol. 2D A-9

OPCODE MAP

Table A-3. Two-byte Opcode Map: 00H — 77H (First Byte is 0FH) *

pfx 0 1 2 3 4 5 6 7

0
Grp 61A Grp 71A LAR

Gv, Ew
LSL

Gv, Ew
 SYSCALLo64 CLTS SYSRETo64

1

vmovups
Vps, Wps

vmovups
Wps, Vps

vmovlps
Vq, Hq, Mq
vmovhlps

Vq, Hq, Uq

vmovlps
Mq, Vq

vunpcklps
Vx, Hx, Wx

vunpckhps
Vx, Hx, Wx

vmovhpsv1

Vdq, Hq, Mq
vmovlhps

Vdq, Hq, Uq

vmovhpsv1

Mq, Vq

66 vmovupd
Vpd, Wpd

vmovupd
Wpd,Vpd

vmovlpd
Vq, Hq, Mq

vmovlpd
Mq, Vq

vunpcklpd
Vx,Hx,Wx

vunpckhpd
Vx,Hx,Wx

vmovhpdv1

Vdq, Hq, Mq
vmovhpdv1

Mq, Vq

F3 vmovss
Vx, Hx, Wss

vmovss
Wss, Hx, Vss

vmovsldup
Vx, Wx

vmovshdup
Vx, Wx

F2 vmovsd
Vx, Hx, Wsd

vmovsd
Wsd, Hx, Vsd

vmovddup
Vx, Wx

2

MOV
Rd, Cd

MOV
Rd, Dd

MOV
Cd, Rd

MOV
Dd, Rd

3 WRMSR RDTSC RDMSR RDPMC SYSENTER SYSEXIT GETSEC

4

CMOVcc, (Gv, Ev) - Conditional Move

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

5

vmovmskps
Gy, Ups

vsqrtps
Vps, Wps

vrsqrtps
Vps, Wps

vrcpps
Vps, Wps

vandps
Vps, Hps, Wps

vandnps
Vps, Hps, Wps

vorps
Vps, Hps, Wps

vxorps
Vps, Hps, Wps

66 vmovmskpd
Gy,Upd

vsqrtpd
Vpd, Wpd

vandpd
Vpd, Hpd, Wpd

vandnpd
Vpd, Hpd, Wpd

vorpd
Vpd, Hpd, Wpd

vxorpd
Vpd, Hpd, Wpd

F3 vsqrtss
Vss, Hss, Wss

vrsqrtss
Vss, Hss, Wss

vrcpss
Vss, Hss, Wss

F2 vsqrtsd
Vsd, Hsd, Wsd

6

punpcklbw
Pq, Qd

punpcklwd
Pq, Qd

punpckldq
Pq, Qd

packsswb
Pq, Qq

pcmpgtb
Pq, Qq

pcmpgtw
Pq, Qq

pcmpgtd
Pq, Qq

packuswb
Pq, Qq

66 vpunpcklbw
Vx, Hx, Wx

vpunpcklwd
Vx, Hx, Wx

vpunpckldq
Vx, Hx, Wx

vpacksswb
Vx, Hx, Wx

vpcmpgtb
Vx, Hx, Wx

vpcmpgtw
Vx, Hx, Wx

vpcmpgtd
Vx, Hx, Wx

vpackuswb
Vx, Hx, Wx

F3

7

pshufw
Pq, Qq, Ib

(Grp 121A) (Grp 131A) (Grp 141A) pcmpeqb
Pq, Qq

pcmpeqw
Pq, Qq

pcmpeqd
Pq, Qq

emms
vzeroupperv

vzeroallv

66 vpshufd
Vx, Wx, Ib

vpcmpeqb
Vx, Hx, Wx

vpcmpeqw
Vx, Hx, Wx

vpcmpeqd
Vx, Hx, Wx

F3 vpshufhw
Vx, Wx, Ib

F2 vpshuflw
Vx, Wx, Ib

A-10 Vol. 2D

OPCODE MAP

Table A-3. Two-byte Opcode Map: 08H — 7FH (First Byte is 0FH) *

pfx 8 9 A B C D E F

0
INVD WBINVD 2-byte Illegal

Opcodes
UD21B

 prefetchw(/1)
Ev

1

Prefetch1C

(Grp 161A)
Reserved-NOP bndldx bndstx Reserved-NOP NOP /0 Ev

66 bndmov bndmov

F3 bndcl bndmk

F2
bndcu bndcn

2

vmovaps
Vps, Wps

vmovaps
Wps, Vps

cvtpi2ps
Vps, Qpi

vmovntps
Mps, Vps

cvttps2pi
Ppi, Wps

cvtps2pi
Ppi, Wps

vucomiss
Vss, Wss

vcomiss
Vss, Wss

66 vmovapd
Vpd, Wpd

vmovapd
Wpd,Vpd

cvtpi2pd
Vpd, Qpi

vmovntpd
Mpd, Vpd

cvttpd2pi
Ppi, Wpd

cvtpd2pi
Qpi, Wpd

vucomisd
Vsd, Wsd

vcomisd
Vsd, Wsd

F3 vcvtsi2ss
Vss, Hss, Ey

vcvttss2si
Gy, Wss

vcvtss2si
Gy, Wss

F2 vcvtsi2sd
Vsd, Hsd, Ey

vcvttsd2si
Gy, Wsd

vcvtsd2si
Gy, Wsd

3
3-byte escape

(Table A-4)
3-byte escape

(Table A-5)

4

CMOVcc(Gv, Ev) - Conditional Move
S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

5

vaddps
Vps, Hps, Wps

vmulps
Vps, Hps, Wps

vcvtps2pd
Vpd, Wps

vcvtdq2ps
Vps, Wdq

vsubps
Vps, Hps, Wps

vminps
Vps, Hps, Wps

vdivps
Vps, Hps, Wps

vmaxps
Vps, Hps, Wps

66 vaddpd
Vpd, Hpd, Wpd

vmulpd
Vpd, Hpd, Wpd

vcvtpd2ps
Vps, Wpd

vcvtps2dq
Vdq, Wps

vsubpd
Vpd, Hpd, Wpd

vminpd
Vpd, Hpd, Wpd

vdivpd
Vpd, Hpd, Wpd

vmaxpd
Vpd, Hpd, Wpd

F3 vaddss
Vss, Hss, Wss

vmulss
Vss, Hss, Wss

vcvtss2sd
Vsd, Hx, Wss

vcvttps2dq
Vdq, Wps

vsubss
Vss, Hss, Wss

vminss
Vss, Hss, Wss

vdivss
Vss, Hss, Wss

vmaxss
Vss, Hss, Wss

F2 vaddsd
Vsd, Hsd, Wsd

vmulsd
Vsd, Hsd, Wsd

vcvtsd2ss
Vss, Hx, Wsd

vsubsd
Vsd, Hsd, Wsd

vminsd
Vsd, Hsd, Wsd

vdivsd
Vsd, Hsd, Wsd

vmaxsd
Vsd, Hsd, Wsd

6

punpckhbw
Pq, Qd

punpckhwd
Pq, Qd

punpckhdq
Pq, Qd

packssdw
Pq, Qd

movd/q
Pd, Ey

movq
Pq, Qq

66 vpunpckhbw
Vx, Hx, Wx

vpunpckhwd
Vx, Hx, Wx

vpunpckhdq
Vx, Hx, Wx

vpackssdw
Vx, Hx, Wx

vpunpcklqdq
Vx, Hx, Wx

vpunpckhqdq
Vx, Hx, Wx

vmovd/q
Vy, Ey

vmovdqa

Vx, Wx

F3 vmovdqu
Vx, Wx

7

VMREAD
Ey, Gy

VMWRITE
Gy, Ey

movd/q
Ey, Pd

movq
Qq, Pq

66 vhaddpd
Vpd, Hpd, Wpd

vhsubpd
Vpd, Hpd, Wpd

vmovd/q
Ey, Vy

vmovdqa
Wx,Vx

F3 vmovq
Vq, Wq

vmovdqu
Wx,Vx

F2

vhaddps
Vps, Hps, Wps

vhsubps
Vps, Hps, Wps

Vol. 2D A-11

OPCODE MAP

Table A-3. Two-byte Opcode Map: 80H — F7H (First Byte is 0FH) *

pfx 0 1 2 3 4 5 6 7

8
Jccf64, Jz - Long-displacement jump on condition

O NO B/CNAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

9
SETcc, Eb - Byte Set on condition

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

A
PUSHd64

FS
POPd64

FS
CPUID BT

Ev, Gv
SHLD

Ev, Gv, Ib
SHLD

Ev, Gv, CL

B
CMPXCHG LSS

Gv, Mp
BTR

Ev, Gv
LFS

Gv, Mp
LGS

Gv, Mp
MOVZX

Eb, Gb Ev, Gv Gv, Eb Gv, Ew

C

XADD
Eb, Gb

XADD
Ev, Gv

vcmpps
Vps,Hps,Wps,Ib

movnti
My, Gy

pinsrw
Pq,Ry/Mw,Ib

pextrw
Gd, Nq, Ib

vshufps
Vps,Hps,Wps,Ib

Grp 91A

66 vcmppd
Vpd,Hpd,Wpd,Ib

vpinsrw
Vdq,Hdq,Ry/Mw,Ib

vpextrw
Gd, Udq, Ib

vshufpd
Vpd,Hpd,Wpd,Ib

F3 vcmpss
Vss,Hss,Wss,Ib

F2 vcmpsd
Vsd,Hsd,Wsd,Ib

D

psrlw
Pq, Qq

psrld
Pq, Qq

psrlq
Pq, Qq

paddq
Pq, Qq

pmullw
Pq, Qq

pmovmskb
Gd, Nq

66 vaddsubpd
Vpd, Hpd, Wpd

vpsrlw
Vx, Hx, Wx

vpsrld
Vx, Hx, Wx

vpsrlq
Vx, Hx, Wx

vpaddq
Vx, Hx, Wx

vpmullw
Vx, Hx, Wx

vmovq
Wq, Vq

vpmovmskb
Gd, Ux

F3 movq2dq
Vdq, Nq

F2 vaddsubps
Vps, Hps, Wps

movdq2q
Pq, Uq

E

pavgb
Pq, Qq

psraw
Pq, Qq

psrad
Pq, Qq

pavgw
Pq, Qq

pmulhuw
Pq, Qq

pmulhw
Pq, Qq

movntq
Mq, Pq

66 vpavgb
Vx, Hx, Wx

vpsraw
Vx, Hx, Wx

vpsrad
Vx, Hx, Wx

vpavgw
Vx, Hx, Wx

vpmulhuw
Vx, Hx, Wx

vpmulhw
Vx, Hx, Wx

vcvttpd2dq
Vx, Wpd

vmovntdq
Mx, Vx

F3 vcvtdq2pd
Vx, Wpd

F2 vcvtpd2dq
Vx, Wpd

F

psllw
Pq, Qq

pslld
Pq, Qq

psllq
Pq, Qq

pmuludq
Pq, Qq

pmaddwd
Pq, Qq

psadbw
Pq, Qq

maskmovq
Pq, Nq

66 vpsllw
Vx, Hx, Wx

vpslld
Vx, Hx, Wx

vpsllq
Vx, Hx, Wx

vpmuludq
Vx, Hx, Wx

vpmaddwd
Vx, Hx, Wx

vpsadbw
Vx, Hx, Wx

vmaskmovdqu
Vdq, Udq

F2 vlddqu
Vx, Mx

A-12 Vol. 2D

OPCODE MAP

Table A-3. Two-byte Opcode Map: 88H — FFH (First Byte is 0FH) *

pfx 8 9 A B C D E F

8
Jccf64, Jz - Long-displacement jump on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

9
SETcc, Eb - Byte Set on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

A PUSHd64

GS
POPd64

GS
RSM BTS

Ev, Gv
SHRD

Ev, Gv, Ib
SHRD

Ev, Gv, CL
(Grp 151A)1C IMUL

Gv, Ev

B

JMPE
(reserved for

emulator on IPF)

Grp 101A

Invalid Opcode1B
Grp 81A

Ev, Ib
BTC

Ev, Gv
BSF

Gv, Ev
BSR

Gv, Ev
MOVSX

Gv, Eb Gv, Ew

F3 POPCNT
Gv, Ev

TZCNT
Gv, Ev

LZCNT
Gv, Ev

C

BSWAP

RAX/EAX/
R8/R8D

RCX/ECX/
R9/R9D

RDX/EDX/
R10/R10D

RBX/EBX/
R11/R11D

RSP/ESP/
R12/R12D

RBP/EBP/
R13/R13D

RSI/ESI/
R14/R14D

RDI/EDI/
R15/R15D

D

psubusb
Pq, Qq

psubusw
Pq, Qq

pminub
Pq, Qq

pand
Pq, Qq

paddusb
Pq, Qq

paddusw
Pq, Qq

pmaxub
Pq, Qq

pandn
Pq, Qq

66 vpsubusb
Vx, Hx, Wx

vpsubusw
Vx, Hx, Wx

vpminub
Vx, Hx, Wx

vpand
Vx, Hx, Wx

vpaddusb
Vx, Hx, Wx

vpaddusw
Vx, Hx, Wx

vpmaxub
Vx, Hx, Wx

vpandn
Vx, Hx, Wx

F3

F2

E

psubsb
Pq, Qq

psubsw
Pq, Qq

pminsw
Pq, Qq

por
Pq, Qq

paddsb
Pq, Qq

paddsw
Pq, Qq

pmaxsw
Pq, Qq

pxor
Pq, Qq

66 vpsubsb
Vx, Hx, Wx

vpsubsw
Vx, Hx, Wx

vpminsw
Vx, Hx, Wx

vpor
Vx, Hx, Wx

vpaddsb
Vx, Hx, Wx

vpaddsw
Vx, Hx, Wx

vpmaxsw
Vx, Hx, Wx

vpxor
Vx, Hx, Wx

F3

F2

F

psubb
Pq, Qq

psubw
Pq, Qq

psubd
Pq, Qq

psubq
Pq, Qq

paddb
Pq, Qq

paddw
Pq, Qq

paddd
Pq, Qq UD0

66 vpsubb
Vx, Hx, Wx

vpsubw
Vx, Hx, Wx

vpsubd
Vx, Hx, Wx

vpsubq
Vx, Hx, Wx

vpaddb
Vx, Hx, Wx

vpaddw
Vx, Hx, Wx

vpaddd
Vx, Hx, Wx

F2

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Vol. 2D A-13

OPCODE MAP

Table A-4. Three-byte Opcode Map: 00H — F7H (First Two Bytes are 0F 38H) *

pfx 0 1 2 3 4 5 6 7

0

pshufb
Pq, Qq

phaddw
Pq, Qq

phaddd
Pq, Qq

phaddsw
Pq, Qq

pmaddubsw
Pq, Qq

phsubw
Pq, Qq

phsubd
Pq, Qq

phsubsw
Pq, Qq

66 vpshufb
Vx, Hx, Wx

vphaddw
Vx, Hx, Wx

vphaddd
Vx, Hx, Wx

vphaddsw
Vx, Hx, Wx

vpmaddubsw
Vx, Hx, Wx

vphsubw
Vx, Hx, Wx

vphsubd
Vx, Hx, Wx

vphsubsw
Vx, Hx, Wx

1 66

pblendvb
Vdq, Wdq

vcvtph2psv

Vx, Wx, Ib
blendvps
Vdq, Wdq

blendvpd
Vdq, Wdq

vpermpsv

Vqq, Hqq, Wqq
vptest
Vx, Wx

2 66 vpmovsxbw
Vx, Ux/Mq

vpmovsxbd
Vx, Ux/Md

vpmovsxbq
Vx, Ux/Mw

vpmovsxwd
Vx, Ux/Mq

vpmovsxwq
Vx, Ux/Md

vpmovsxdq
Vx, Ux/Mq

3 66 vpmovzxbw
Vx, Ux/Mq

vpmovzxbd
Vx, Ux/Md

vpmovzxbq
Vx, Ux/Mw

vpmovzxwd
Vx, Ux/Mq

vpmovzxwq
Vx, Ux/Md

vpmovzxdq
Vx, Ux/Mq

vpermdv

Vqq, Hqq, Wqq
vpcmpgtq

Vx, Hx, Wx

4 66 vpmulld
Vx, Hx, Wx

vphminposuw
Vdq, Wdq

vpsrlvd/qv

Vx, Hx, Wx
vpsravdv

Vx, Hx, Wx
vpsllvd/qv

Vx, Hx, Wx

5

6

7

8 66

INVEPT
Gy, Mdq

INVVPID
Gy, Mdq

INVPCID
Gy, Mdq

9 66 vgatherdd/qv
Vx,Hx,Wx

vgatherqd/qv
Vx,Hx,Wx

vgatherdps/dv
Vx,Hx,Wx

vgatherqps/dv
Vx,Hx,Wx

vfmaddsub132ps/dv
Vx,Hx,Wx

vfmsubadd132ps/dv
Vx,Hx,Wx

A 66 vfmaddsub213ps/dv
Vx,Hx,Wx

vfmsubadd213ps/dv
Vx,Hx,Wx

B 66 vfmaddsub231ps/dv
Vx,Hx,Wx

vfmsubadd231ps/dv
Vx,Hx,Wx

C

D

E

F

MOVBE
Gy, My

MOVBE
My, Gy

ANDNv

Gy, By, Ey

Grp 171A

BZHIv
Gy, Ey, By

BEXTRv

Gy, Ey, By

66 MOVBE
Gw, Mw

MOVBE
Mw, Gw

ADCX
Gy, Ey

SHLXv

Gy, Ey, By

F3 PEXTv

Gy, By, Ey
ADOX
Gy, Ey

SARXv

Gy, Ey, By

F2 CRC32
Gd, Eb

CRC32
Gd, Ey

PDEPv

Gy, By, Ey
MULXv

By,Gy,rDX,Ey
SHRXv

Gy, Ey, By
66 &
F2

CRC32
Gd, Eb

CRC32
Gd, Ew

A-14 Vol. 2D

OPCODE MAP

Table A-4. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 38H) *

pfx 8 9 A B C D E F

0

psignb
Pq, Qq

psignw
Pq, Qq

psignd
Pq, Qq

pmulhrsw
Pq, Qq

66
vpsignb

Vx, Hx, Wx
vpsignw

Vx, Hx, Wx
vpsignd

Vx, Hx, Wx
vpmulhrsw
Vx, Hx, Wx

vpermilpsv
Vx,Hx,Wx

vpermilpdv
Vx,Hx,Wx

vtestpsv
Vx, Wx

vtestpdv
Vx, Wx

1 pabsb
Pq, Qq

pabsw
Pq, Qq

pabsd
Pq, Qq

66 vbroadcastssv
Vx, Wd

vbroadcastsdv Vqq,
Wq

vbroadcastf128v Vqq,
Mdq

vpabsb
Vx, Wx

vpabsw
Vx, Wx

vpabsd
Vx, Wx

2 66 vpmuldq
Vx, Hx, Wx

vpcmpeqq
Vx, Hx, Wx

vmovntdqa
Vx, Mx

vpackusdw
Vx, Hx, Wx

vmaskmovpsv
Vx,Hx,Mx

vmaskmovpdv
Vx,Hx,Mx

vmaskmovpsv
Mx,Hx,Vx

vmaskmovpdv
Mx,Hx,Vx

3 66 vpminsb
Vx, Hx, Wx

vpminsd
Vx, Hx, Wx

vpminuw
Vx, Hx, Wx

vpminud
Vx, Hx, Wx

vpmaxsb
Vx, Hx, Wx

vpmaxsd
Vx, Hx, Wx

vpmaxuw
Vx, Hx, Wx

vpmaxud
Vx, Hx, Wx

4

5 66 vpbroadcastdv
Vx, Wx

vpbroadcastqv
Vx, Wx

vbroadcasti128v
Vqq, Mdq

6

7 66 vpbroadcastbv
Vx, Wx

vpbroadcastwv
Vx, Wx

8 66
vpmaskmovd/qv

Vx,Hx,Mx
vpmaskmovd/qv

Mx,Vx,Hx

9 66 vfmadd132ps/dv
Vx, Hx, Wx

vfmadd132ss/dv
Vx, Hx, Wx

vfmsub132ps/dv
Vx, Hx, Wx

vfmsub132ss/dv
Vx, Hx, Wx

vfnmadd132ps/dv
Vx, Hx, Wx

vfnmadd132ss/dv
Vx, Hx, Wx

vfnmsub132ps/dv
Vx, Hx, Wx

vfnmsub132ss/dv
Vx, Hx, Wx

A 66 vfmadd213ps/dv
Vx, Hx, Wx

vfmadd213ss/dv
Vx, Hx, Wx

vfmsub213ps/dv
Vx, Hx, Wx

vfmsub213ss/dv
Vx, Hx, Wx

vfnmadd213ps/dv
Vx, Hx, Wx

vfnmadd213ss/dv
Vx, Hx, Wx

vfnmsub213ps/dv
Vx, Hx, Wx

vfnmsub213ss/dv
Vx, Hx, Wx

B 66 vfmadd231ps/dv
Vx, Hx, Wx

vfmadd231ss/dv
Vx, Hx, Wx

vfmsub231ps/dv
Vx, Hx, Wx

vfmsub231ss/dv
Vx, Hx, Wx

vfnmadd231ps/dv
Vx, Hx, Wx

vfnmadd231ss/dv
Vx, Hx, Wx

vfnmsub231ps/dv
Vx, Hx, Wx

vfnmsub231ss/dv
Vx, Hx, Wx

C
sha1nexte
Vdq,Wdq

sha1msg1
Vdq,Wdq

sha1msg2
Vdq,Wdq

sha256rnds2
Vdq,Wdq

sha256msg1
Vdq,Wdq

sha256msg2
Vdq,Wdq

66

D 66 VAESIMC
Vdq, Wdq

VAESENC
Vdq,Hdq,Wdq

VAESENCLAST
Vdq,Hdq,Wdq

VAESDEC
Vdq,Hdq,Wdq

VAESDECLAST
Vdq,Hdq,Wdq

E

F
66
F3
F2

66 & F2

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Vol. 2D A-15

OPCODE MAP

Table A-5. Three-byte Opcode Map: 00H — F7H (First two bytes are 0F 3AH) *

pfx 0 1 2 3 4 5 6 7

0 66

vpermqv

Vqq, Wqq, Ib
vpermpdv

Vqq, Wqq, Ib
vpblenddv

Vx,Hx,Wx,Ib
vpermilpsv
Vx, Wx, Ib

vpermilpdv
Vx, Wx, Ib

vperm2f128v
Vqq,Hqq,Wqq,Ib

1 66 vpextrb
Rd/Mb, Vdq, Ib

vpextrw
Rd/Mw, Vdq, Ib

vpextrd/q
Ey, Vdq, Ib

vextractps
Ed, Vdq, Ib

2 66 vpinsrb
Vdq,Hdq,Ry/Mb,Ib

vinsertps
Vdq,Hdq,Udq/Md,Ib

vpinsrd/q
Vdq,Hdq,Ey,Ib

3

4 66 vdpps
Vx,Hx,Wx,Ib

vdppd
Vdq,Hdq,Wdq,Ib

vmpsadbw
Vx,Hx,Wx,Ib

vpclmulqdq
Vdq,Hdq,Wdq,Ib

vperm2i128v

Vqq,Hqq,Wqq,Ib
5

6 66 vpcmpestrm
Vdq, Wdq, Ib

vpcmpestri
Vdq, Wdq, Ib

vpcmpistrm
Vdq, Wdq, Ib

vpcmpistri
Vdq, Wdq, Ib

7
8
9
A
B
C

D

E
F F2 RORXv

Gy, Ey, Ib

A-16 Vol. 2D

OPCODE MAP

Table A-5. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 3AH) *

pfx 8 9 A B C D E F

0
palignr

Pq, Qq, Ib

66 vroundps
Vx,Wx,Ib

vroundpd
Vx,Wx,Ib

vroundss
Vss,Wss,Ib

vroundsd
Vsd,Wsd,Ib

vblendps
Vx,Hx,Wx,Ib

vblendpd
Vx,Hx,Wx,Ib

vpblendw
Vx,Hx,Wx,Ib

vpalignr
Vx,Hx,Wx,Ib

1 66
vinsertf128v

Vqq,Hqq,Wqq,Ib
vextractf128v
Wdq,Vqq,Ib

vcvtps2phv

Wx, Vx, Ib

2

3 66 vinserti128v
Vqq,Hqq,Wqq,Ib

vextracti128v
Wdq,Vqq,Ib

4 66 vblendvpsv

 Vx,Hx,Wx,Lx
vblendvpdv

Vx,Hx,Wx,Lx
vpblendvbv

Vx,Hx,Wx,Lx
5

6

7
8
9
A
B

C sha1rnds4
Vdq,Wdq,Ib

D 66 VAESKEYGEN
Vdq, Wdq, Ib

E
F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Vol. 2D A-17

OPCODE MAP

A.4 OPCODE EXTENSIONS FOR ONE-BYTE AND TWO-BYTE OPCODES
Some 1-byte and 2-byte opcodes use bits 3-5 of the ModR/M byte (the nnn field in Figure A-1) as an extension of
the opcode.

Opcodes that have opcode extensions are indicated in Table A-6 and organized by group number. Group numbers
(from 1 to 16, second column) provide a table entry point. The encoding for the r/m field for each instruction can
be established using the third column of the table.

A.4.1 Opcode Look-up Examples Using Opcode Extensions
An Example is provided below.

Example A-4. Interpreting an ADD Instruction

An ADD instruction with a 1-byte opcode of 80H is a Group 1 instruction:
• Table A-6 indicates that the opcode extension field encoded in the ModR/M byte for this instruction is 000B.
• The r/m field can be encoded to access a register (11B) or a memory address using a specified addressing

mode (for example: mem = 00B, 01B, 10B).

Example A-5. Looking Up 0F01C3H

Look up opcode 0F01C3 for a VMRESUME instruction by using Table A-2, Table A-3, and Table A-6:
• 0F indicates that this instruction is in the 2-byte opcode map.
• 01 (row 0, column 1 in Table A-3) reveals that this opcode is in Group 7 of Table A-6.
• C3 is the ModR/M byte. The first two bits of C3 are 11B. This tells us to look at the second of the Group 7 rows

in Table A-6.
• The Op/Reg bits [5,4,3] are 000B. This tells us to look in the 000 column for Group 7.
• Finally, the R/M bits [2,1,0] are 011B. This identifies the opcode as the VMRESUME instruction.

A.4.2 Opcode Extension Tables
See Table A-6 below.

mod nnn R/M

Figure A-1. ModR/M Byte nnn Field (Bits 5, 4, and 3)

A-18 Vol. 2D

OPCODE MAP

Table A-6. Opcode Extensions for One- and Two-byte Opcodes by Group Number *

Opcode Group Mod 7,6 pfx

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)
000 001 010 011 100 101 110 111

80-83 1 mem, 11B ADD OR ADC SBB AND SUB XOR CMP

8F 1A mem, 11B POP

C0,C1 reg, imm
D0, D1 reg, 1

D2, D3 reg, CL
2

mem, 11B ROL ROR RCL RCR SHL/SAL SHR SAR

F6, F7 3 mem, 11B TEST
Ib/Iz

NOT NEG MUL
AL/rAX

IMUL
AL/rAX

DIV
AL/rAX

IDIV
AL/rAX

FE 4 mem, 11B INC
Eb

DEC
Eb

FF 5 mem, 11B INC
Ev

DEC
Ev

near CALLf64

Ev
far CALL

Ep
near JMPf64

Ev
far JMP

Mp
PUSHd64

Ev

0F 00 6 mem, 11B SLDT
Rv/Mw

STR
Rv/Mw

LLDT
Ew

LTR
Ew

VERR
Ew

VERW
Ew

0F 01 7

mem SGDT
Ms

SIDT
Ms

LGDT
Ms

LIDT
Ms

SMSW
Mw/Rv

LMSW
Ew

INVLPG
Mb

11B VMCALL (001)
VMLAUNCH

(010)
VMRESUME

(011) VMXOFF
(100)

MONITOR
(000)

MWAIT (001)
CLAC (010)
STAC (011)

ENCLS (111)

XGETBV (000)
XSETBV (001)

VMFUNC
(100)

XEND (101)
XTEST (110)
ENCLU(111)

SWAPGS
o64(000)

RDTSCP (001)

0F BA 8 mem, 11B BT BTS BTR BTC

0F C7 9

mem

CMPXCH8B Mq
CMPXCHG16B

 Mdq

VMPTRLD
Mq

VMPTRST
Mq

66 VMCLEAR
Mq

F3 VMXON
Mq

11B

RDRAND
Rv

RDSEED
Rv

F3 RDPID
Rd/q

0F B9 10
mem UD1

11B

C6

11

mem MOV
Eb, Ib

11B XABORT (000) Ib

C7
mem MOV

Ev, Iz11B XBEGIN (000) Jz

0F 71 12

mem

11B

psrlw
Nq, Ib

psraw
Nq, Ib

psllw
Nq, Ib

66 vpsrlw
Hx,Ux,Ib

vpsraw
Hx,Ux,Ib

vpsllw
Hx,Ux,Ib

0F 72 13

mem

11B

psrld
Nq, Ib

psrad
Nq, Ib

pslld
Nq, Ib

66 vpsrld
Hx,Ux,Ib

vpsrad
Hx,Ux,Ib

vpslld
Hx,Ux,Ib

0F 73 14

mem

11B

psrlq
Nq, Ib

psllq
Nq, Ib

66 vpsrlq
Hx,Ux,Ib

vpsrldq
Hx,Ux,Ib

vpsllq
Hx,Ux,Ib

vpslldq
Hx,Ux,Ib

Vol. 2D A-19

OPCODE MAP

Opcode Group Mod 7,6 pfx

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)
000 001 010 011 100 101 110 111

0F AE 15

mem fxsave fxrstor ldmxcsr stmxcsr XSAVE XRSTOR XSAVEOPT clflush

11B

lfence mfence sfence

F3 RDFSBASE
Ry

RDGSBASE
Ry

WRFSBASE
Ry

WRGSBASE
Ry

0F 18 16
mem

prefetch
NTA

prefetch
T0

prefetch
T1

prefetch
T2

Reserved NOP

11B Reserved NOP

VEX.0F38 F3 17
mem BLSRv

By, Ey
BLSMSKv

By, Ey
BLSIv
By, Ey11B

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-6. Opcode Extensions for One- and Two-byte Opcodes by Group Number * (Contd.)

A-20 Vol. 2D

OPCODE MAP

A.5 ESCAPE OPCODE INSTRUCTIONS
Opcode maps for coprocessor escape instruction opcodes (x87 floating-point instruction opcodes) are in Table A-7
through Table A-22. These maps are grouped by the first byte of the opcode, from D8-DF. Each of these opcodes
has a ModR/M byte. If the ModR/M byte is within the range of 00H-BFH, bits 3-5 of the ModR/M byte are used as
an opcode extension, similar to the technique used for 1-and 2-byte opcodes (see A.4). If the ModR/M byte is
outside the range of 00H through BFH, the entire ModR/M byte is used as an opcode extension.

A.5.1 Opcode Look-up Examples for Escape Instruction Opcodes
Examples are provided below.

Example A-6. Opcode with ModR/M Byte in the 00H through BFH Range

DD0504000000H can be interpreted as follows:
• The instruction encoded with this opcode can be located in Section . Since the ModR/M byte (05H) is within the

00H through BFH range, bits 3 through 5 (000) of this byte indicate the opcode for an FLD double-real
instruction (see Table A-9).

• The double-real value to be loaded is at 00000004H (the 32-bit displacement that follows and belongs to this
opcode).

Example A-7. Opcode with ModR/M Byte outside the 00H through BFH Range

D8C1H can be interpreted as follows:
• This example illustrates an opcode with a ModR/M byte outside the range of 00H through BFH. The instruction

can be located in Section A.4.
• In Table A-8, the ModR/M byte C1H indicates row C, column 1 (the FADD instruction using ST(0), ST(1) as

operands).

A.5.2 Escape Opcode Instruction Tables
Tables are listed below.

A.5.2.1 Escape Opcodes with D8 as First Byte
Table A-7 and A-8 contain maps for the escape instruction opcodes that begin with D8H. Table A-7 shows the map if the ModR/M
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-7. D8 Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte (refer to Figure A.4)

000B 001B 010B 011B 100B 101B 110B 111B

FADD
single-real

FMUL
single-real

FCOM
single-real

FCOMP
single-real

FSUB
single-real

FSUBR
single-real

FDIV
single-real

FDIVR
single-real

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Vol. 2D A-21

OPCODE MAP

Table A-8 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit of the ModR/M byte selects the
table row and the second digit selects the column.

A.5.2.2 Escape Opcodes with D9 as First Byte
Table A-9 and A-10 contain maps for escape instruction opcodes that begin with D9H. Table A-9 shows the map if the ModR/M
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.
.

Table A-8. D8 Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FADD

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCOM

ST(0),ST(0) ST(0),ST(1) ST(0),T(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FSUB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F FDIV

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C FMUL

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCOMP

ST(0),ST(0) ST(0),ST(1) ST(0),T(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FSUBR

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F FDIVR

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-9. D9 Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B
FLD

single-real
FST

single-real
FSTP

single-real
FLDENV

14/28 bytes
FLDCW
2 bytes

FSTENV
14/28 bytes

FSTCW
2 bytes

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A-22 Vol. 2D

OPCODE MAP

Table A-10 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit of the ModR/M byte selects the
table row and the second digit selects the column.

A.5.2.3 Escape Opcodes with DA as First Byte
Table A-11 and A-12 contain maps for escape instruction opcodes that begin with DAH. Table A-11 shows the map if the ModR/M
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-10. D9 Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FLD
ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FNOP

E FCHS FABS FTST FXAM

F F2XM1 FYL2X FPTAN FPATAN FXTRACT FPREM1 FDECSTP FINCSTP

8 9 A B C D E F
C FXCH

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)
D

E FLD1 FLDL2T FLDL2E FLDPI FLDLG2 FLDLN2 FLDZ

F FPREM FYL2XP1 FSQRT FSINCOS FRNDINT FSCALE FSIN FCOS

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-11. DA Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FIADD
dword-integer

FIMUL
dword-integer

FICOM
dword-integer

FICOMP
dword-integer

FISUB
dword-integer

FISUBR
dword-integer

FIDIV
dword-integer

FIDIVR
dword-integer

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Vol. 2D A-23

OPCODE MAP

Table A-12 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit of the ModR/M byte selects
the table row and the second digit selects the column.

A.5.2.4 Escape Opcodes with DB as First Byte
Table A-13 and A-14 contain maps for escape instruction opcodes that begin with DBH. Table A-13 shows the map if the ModR/M
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-12. DA Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FCMOVB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVBE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E

F

8 9 A B C D E F

C FCMOVE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVU

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FUCOMPP

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-13. DB Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FILD
dword-integer

FISTTP
dword-integer

FIST
dword-integer

FISTP
dword-integer

FLD
extended-real

FSTP
extended-real

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A-24 Vol. 2D

OPCODE MAP

Table A-14 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit of the ModR/M byte selects the
table row and the second digit selects the column.

A.5.2.5 Escape Opcodes with DC as First Byte
Table A-15 and A-16 contain maps for escape instruction opcodes that begin with DCH. Table A-15 shows the map if the ModR/M
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-14. DB Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FCMOVNB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVNBE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FCLEX FINIT

F FCOMI

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C FCMOVNE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVNU

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FUCOMI

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-15. DC Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte (refer to Figure A-1)

000B 001B 010B 011B 100B 101B 110B 111B

FADD
double-real

FMUL
double-real

FCOM
double-real

FCOMP
double-real

FSUB
double-real

FSUBR
double-real

FDIV
double-real

FDIVR
double-real

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Vol. 2D A-25

OPCODE MAP

Table A-16 shows the map if the ModR/M byte is outside the range of 00H-BFH. In this case the first digit of the ModR/M byte
selects the table row and the second digit selects the column.

A.5.2.6 Escape Opcodes with DD as First Byte
Table A-17 and A-18 contain maps for escape instruction opcodes that begin with DDH. Table A-17 shows the map if the ModR/M
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-16. DC Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FADD

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUBR

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVR

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

8 9 A B C D E F

C FMUL

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUB

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIV

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-17. DD Opcode Map When ModR/M Byte is Within 00H to BFH *

nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FLD
double-real

FISTTP
integer64

FST
double-real

FSTP
double-real

FRSTOR
98/108bytes

FSAVE
98/108bytes

FSTSW
2 bytes

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A-26 Vol. 2D

OPCODE MAP

Table A-18 shows the map if the ModR/M byte is outside the range of 00H-BFH. The first digit of the ModR/M byte selects the table
row and the second digit selects the column.

A.5.2.7 Escape Opcodes with DE as First Byte
Table A-19 and A-20 contain opcode maps for escape instruction opcodes that begin with DEH. Table A-19 shows the opcode map
if the ModR/M byte is in the range of 00H-BFH. In this case, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruc-
tion.

Table A-18. DD Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FFREE

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

D FST

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

E FUCOM

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F

8 9 A B C D E F

C

D FSTP

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

E FUCOMP

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-19. DE Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FIADD
word-integer

FIMUL
word-integer

FICOM
word-integer

FICOMP
word-integer

FISUB
word-integer

FISUBR
word-integer

FIDIV
word-integer

FIDIVR
word-integer

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Vol. 2D A-27

OPCODE MAP

Table A-20 shows the opcode map if the ModR/M byte is outside the range of 00H-BFH. The first digit of the ModR/M byte selects
the table row and the second digit selects the column.

A.5.2.8 Escape Opcodes with DF As First Byte
Table A-21 and A-22 contain the opcode maps for escape instruction opcodes that begin with DFH. Table A-21 shows the opcode
map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-20. DE Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FADDP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUBRP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVRP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

8 9 A B C D E F

C FMULP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D FCOMPP

E FSUBP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0). ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-21. DF Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FILD
word-integer

FISTTP
word-integer

FIST
word-integer

FISTP
word-integer

FBLD
packed-BCD

FILD
qword-integer

FBSTP
packed-BCD

FISTP
qword-integer

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A-28 Vol. 2D

OPCODE MAP

Table A-22 shows the opcode map if the ModR/M byte is outside the range of 00H-BFH. The first digit of the ModR/M byte selects
the table row and the second digit selects the column.

Table A-22. DF Opcode Map When ModR/M Byte is Outside 00H to BFH *

0 1 2 3 4 5 6 7

C

D

E FSTSW
AX

F FCOMIP

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C

D

E FUCOMIP

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Vol. 2D A-29

OPCODE MAP

This page was

intentionally left

blank.

A-30 Vol. 2D

OPCODE MAP

Vol. 2D B-1

APPENDIX B
INSTRUCTION FORMATS AND ENCODINGS

This appendix provides machine instruction formats and encodings of IA-32 instructions. The first section describes
the IA-32 architecture’s machine instruction format. The remaining sections show the formats and encoding of
general-purpose, MMX, P6 family, SSE/SSE2/SSE3, x87 FPU instructions, and VMX instructions. Those instruction
formats also apply to Intel 64 architecture. Instruction formats used in 64-bit mode are provided as supersets of
the above.

B.1 MACHINE INSTRUCTION FORMAT
All Intel Architecture instructions are encoded using subsets of the general machine instruction format shown in
Figure B-1. Each instruction consists of:
• an opcode
• a register and/or address mode specifier consisting of the ModR/M byte and sometimes the scale-index-base

(SIB) byte (if required)
• a displacement and an immediate data field (if required)

The following sections discuss this format.

B.1.1 Legacy Prefixes
The legacy prefixes noted in Figure B-1 include 66H, 67H, F2H, and F3H. They are optional, except when F2H, F3H,
and 66H are used in instruction extensions. Legacy prefixes must be placed before REX prefixes.

Refer to Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A, for more information on legacy prefixes.

Figure B-1. General Machine Instruction Format

ModR/M Byte

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7-6 5-3 2-07-6 5-3 2-0

T T T T T T T T T T T T T T T T

Mod Reg* R/M Scale Index Base d32 | 16 | 8 | Noned32 | 16 | 8 | None

SIB Byte Address Displacement
(4, 2, 1 Bytes or None)

Immediate Data
(4,2,1 Bytes or None)

Register and/or Address
Mode Specifier

Legacy Prefixes REX Prefixes

7 6 5 4 3 2 1 0

T T T T T T T T

(optional)Grp 1, Grp 2,
Grp 3, Grp 4

NOTE:

* The Reg Field may be used as an
opcode extension field (TTT) and as a
way to encode diagnostic registers
(eee).

1, 2, or 3 Byte Opcodes (T = Opcode

B-2 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

B.1.2 REX Prefixes
REX prefixes are a set of 16 opcodes that span one row of the opcode map and occupy entries 40H to 4FH. These
opcodes represent valid instructions (INC or DEC) in IA-32 operating modes and in compatibility mode. In 64-bit
mode, the same opcodes represent the instruction prefix REX and are not treated as individual instructions.

Refer to Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A, for more information on REX prefixes.

B.1.3 Opcode Fields
The primary opcode for an instruction is encoded in one to three bytes of the instruction. Within the primary
opcode, smaller encoding fields may be defined. These fields vary according to the class of operation being
performed.

Almost all instructions that refer to a register and/or memory operand have a register and/or address mode byte
following the opcode. This byte, the ModR/M byte, consists of the mod field (2 bits), the reg field (3 bits; this field
is sometimes an opcode extension), and the R/M field (3 bits). Certain encodings of the ModR/M byte indicate that
a second address mode byte, the SIB byte, must be used.

If the addressing mode specifies a displacement, the displacement value is placed immediately following the
ModR/M byte or SIB byte. Possible sizes are 8, 16, or 32 bits. If the instruction specifies an immediate value, the
immediate value follows any displacement bytes. The immediate, if specified, is always the last field of the instruc-
tion.

Refer to Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A, for more information on opcodes.

B.1.4 Special Fields
Table B-1 lists bit fields that appear in certain instructions, sometimes within the opcode bytes. All of these fields
(except the d bit) occur in the general-purpose instruction formats in Table B-13.

Table B-1. Special Fields Within Instruction Encodings

Field Name Description
Number of

Bits

reg General-register specifier (see Table B-4 or B-5). 3

w Specifies if data is byte or full-sized, where full-sized is 16 or 32 bits (see Table B-6). 1

s Specifies sign extension of an immediate field (see Table B-7). 1

sreg2 Segment register specifier for CS, SS, DS, ES (see Table B-8). 2

sreg3 Segment register specifier for CS, SS, DS, ES, FS, GS (see Table B-8). 3

eee Specifies a special-purpose (control or debug) register (see Table B-9). 3

tttn For conditional instructions, specifies a condition asserted or negated (see Table B-12). 4

d Specifies direction of data operation (see Table B-11). 1

Vol. 2D B-3

INSTRUCTION FORMATS AND ENCODINGS

B.1.4.1 Reg Field (reg) for Non-64-Bit Modes
The reg field in the ModR/M byte specifies a general-purpose register operand. The group of registers specified is
modified by the presence and state of the w bit in an encoding (refer to Section B.1.4.3). Table B-2 shows the
encoding of the reg field when the w bit is not present in an encoding; Table B-3 shows the encoding of the reg field
when the w bit is present.

Table B-2. Encoding of reg Field When w Field is Not Present in Instruction

reg Field
Register Selected during
16-Bit Data Operations

Register Selected during
32-Bit Data Operations

000 AX EAX

001 CX ECX

010 DX EDX

011 BX EBX

100 SP ESP

101 BP EBP

110 SI ESI

111 DI EDI

Table B-3. Encoding of reg Field When w Field is Present in Instruction

Register Specified by reg Field
During 16-Bit Data Operations

Register Specified by reg Field
During 32-Bit Data Operations

reg
Function of w Field

reg
Function of w Field

When w = 0 When w = 1 When w = 0 When w = 1

000 AL AX 000 AL EAX

001 CL CX 001 CL ECX

010 DL DX 010 DL EDX

011 BL BX 011 BL EBX

100 AH SP 100 AH ESP

101 CH BP 101 CH EBP

110 DH SI 110 DH ESI

111 BH DI 111 BH EDI

B-4 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

B.1.4.2 Reg Field (reg) for 64-Bit Mode
Just like in non-64-bit modes, the reg field in the ModR/M byte specifies a general-purpose register operand. The
group of registers specified is modified by the presence of and state of the w bit in an encoding (refer to Section
B.1.4.3). Table B-4 shows the encoding of the reg field when the w bit is not present in an encoding; Table B-5
shows the encoding of the reg field when the w bit is present.

B.1.4.3 Encoding of Operand Size (w) Bit
The current operand-size attribute determines whether the processor is performing 16-bit, 32-bit or 64-bit opera-
tions. Within the constraints of the current operand-size attribute, the operand-size bit (w) can be used to indicate
operations on 8-bit operands or the full operand size specified with the operand-size attribute. Table B-6 shows the
encoding of the w bit depending on the current operand-size attribute.

Table B-4. Encoding of reg Field When w Field is Not Present in Instruction

reg Field
Register Selected during
16-Bit Data Operations

Register Selected during
32-Bit Data Operations

Register Selected during
64-Bit Data Operations

000 AX EAX RAX

001 CX ECX RCX

010 DX EDX RDX

011 BX EBX RBX

100 SP ESP RSP

101 BP EBP RBP

110 SI ESI RSI

111 DI EDI RDI

Table B-5. Encoding of reg Field When w Field is Present in Instruction

Register Specified by reg Field
During 16-Bit Data Operations

Register Specified by reg Field
During 32-Bit Data Operations

reg
Function of w Field

reg
Function of w Field

When w = 0 When w = 1 When w = 0 When w = 1

000 AL AX 000 AL EAX

001 CL CX 001 CL ECX

010 DL DX 010 DL EDX

011 BL BX 011 BL EBX

100 AH1 SP 100 AH* ESP

101 CH1 BP 101 CH* EBP

110 DH1 SI 110 DH* ESI

111 BH1 DI 111 BH* EDI

NOTES:
1. AH, CH, DH, BH can not be encoded when REX prefix is used. Such an expression defaults to the low byte.

Table B-6. Encoding of Operand Size (w) Bit

w Bit
Operand Size When

Operand-Size Attribute is 16 Bits
Operand Size When

Operand-Size Attribute is 32 Bits

0 8 Bits 8 Bits

1 16 Bits 32 Bits

Vol. 2D B-5

INSTRUCTION FORMATS AND ENCODINGS

B.1.4.4 Sign-Extend (s) Bit
The sign-extend (s) bit occurs in instructions with immediate data fields that are being extended from 8 bits to 16
or 32 bits. See Table B-7.

B.1.4.5 Segment Register (sreg) Field
When an instruction operates on a segment register, the reg field in the ModR/M byte is called the sreg field and is
used to specify the segment register. Table B-8 shows the encoding of the sreg field. This field is sometimes a 2-bit
field (sreg2) and other times a 3-bit field (sreg3).

B.1.4.6 Special-Purpose Register (eee) Field
When control or debug registers are referenced in an instruction they are encoded in the eee field, located in bits 5
though 3 of the ModR/M byte (an alternate encoding of the sreg field). See Table B-9.

Table B-7. Encoding of Sign-Extend (s) Bit

s Effect on 8-Bit
Immediate Data

Effect on 16- or 32-Bit
Immediate Data

0 None None

1 Sign-extend to fill 16-bit or 32-bit destination None

Table B-8. Encoding of the Segment Register (sreg) Field

2-Bit sreg2 Field Segment Register Selected 3-Bit sreg3 Field Segment Register Selected

00 ES 000 ES

01 CS 001 CS

10 SS 010 SS

11 DS 011 DS

100 FS

101 GS

110 Reserved1

111 Reserved

NOTES:
1. Do not use reserved encodings.

Table B-9. Encoding of Special-Purpose Register (eee) Field

eee Control Register Debug Register

000 CR0 DR0

001 Reserved1 DR1

010 CR2 DR2

011 CR3 DR3

100 CR4 Reserved

101 Reserved Reserved

110 Reserved DR6

111 Reserved DR7

NOTES:
1. Do not use reserved encodings.

B-6 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

B.1.4.7 Condition Test (tttn) Field
For conditional instructions (such as conditional jumps and set on condition), the condition test field (tttn) is
encoded for the condition being tested. The ttt part of the field gives the condition to test and the n part indicates
whether to use the condition (n = 0) or its negation (n = 1).
• For 1-byte primary opcodes, the tttn field is located in bits 3, 2, 1, and 0 of the opcode byte.
• For 2-byte primary opcodes, the tttn field is located in bits 3, 2, 1, and 0 of the second opcode byte.

Table B-10 shows the encoding of the tttn field.

B.1.4.8 Direction (d) Bit
In many two-operand instructions, a direction bit (d) indicates which operand is considered the source and which
is the destination. See Table B-11.
• When used for integer instructions, the d bit is located at bit 1 of a 1-byte primary opcode. Note that this bit

does not appear as the symbol “d” in Table B-13; the actual encoding of the bit as 1 or 0 is given.
• When used for floating-point instructions (in Table B-16), the d bit is shown as bit 2 of the first byte of the

primary opcode.

B.1.5 Other Notes
Table B-12 contains notes on particular encodings. These notes are indicated in the tables shown in the following
sections by superscripts.

Table B-10. Encoding of Conditional Test (tttn) Field
t t t n Mnemonic Condition

0000 O Overflow

0001 NO No overflow

0010 B, NAE Below, Not above or equal

0011 NB, AE Not below, Above or equal

0100 E, Z Equal, Zero

0101 NE, NZ Not equal, Not zero

0110 BE, NA Below or equal, Not above

0111 NBE, A Not below or equal, Above

1000 S Sign

1001 NS Not sign

1010 P, PE Parity, Parity Even

1011 NP, PO Not parity, Parity Odd

1100 L, NGE Less than, Not greater than or equal to

1101 NL, GE Not less than, Greater than or equal to

1110 LE, NG Less than or equal to, Not greater than

1111 NLE, G Not less than or equal to, Greater than

Table B-11. Encoding of Operation Direction (d) Bit

d Source Destination

0 reg Field ModR/M or SIB Byte

1 ModR/M or SIB Byte reg Field

Vol. 2D B-7

INSTRUCTION FORMATS AND ENCODINGS

B.2 GENERAL-PURPOSE INSTRUCTION FORMATS AND ENCODINGS FOR NON-
64-BIT MODES

Table B-13 shows machine instruction formats and encodings for general purpose instructions in non-64-bit
modes.

Table B-12. Notes on Instruction Encoding
Symbol Note

A A value of 11B in bits 7 and 6 of the ModR/M byte is reserved.

B A value of 01B (or 10B) in bits 7 and 6 of the ModR/M byte is reserved.

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes

Instruction and Format Encoding

AAA – ASCII Adjust after Addition 0011 0111

AAD – ASCII Adjust AX before Division 1101 0101 : 0000 1010

AAM – ASCII Adjust AX after Multiply 1101 0100 : 0000 1010

AAS – ASCII Adjust AL after Subtraction 0011 1111

ADC – ADD with Carry

register1 to register2 0001 000w : 11 reg1 reg2

register2 to register1 0001 001w : 11 reg1 reg2

memory to register 0001 001w : mod reg r/m

register to memory 0001 000w : mod reg r/m

immediate to register 1000 00sw : 11 010 reg : immediate data

immediate to AL, AX, or EAX 0001 010w : immediate data

immediate to memory 1000 00sw : mod 010 r/m : immediate data

ADD – Add

register1 to register2 0000 000w : 11 reg1 reg2

register2 to register1 0000 001w : 11 reg1 reg2

memory to register 0000 001w : mod reg r/m

register to memory 0000 000w : mod reg r/m

immediate to register 1000 00sw : 11 000 reg : immediate data

immediate to AL, AX, or EAX 0000 010w : immediate data

immediate to memory 1000 00sw : mod 000 r/m : immediate data

AND – Logical AND

register1 to register2 0010 000w : 11 reg1 reg2

register2 to register1 0010 001w : 11 reg1 reg2

memory to register 0010 001w : mod reg r/m

register to memory 0010 000w : mod reg r/m

immediate to register 1000 00sw : 11 100 reg : immediate data

immediate to AL, AX, or EAX 0010 010w : immediate data

immediate to memory 1000 00sw : mod 100 r/m : immediate data

B-8 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

ARPL – Adjust RPL Field of Selector

from register 0110 0011 : 11 reg1 reg2

from memory 0110 0011 : mod reg r/m

BOUND – Check Array Against Bounds 0110 0010 : modA reg r/m

BSF – Bit Scan Forward

register1, register2 0000 1111 : 1011 1100 : 11 reg1 reg2

memory, register 0000 1111 : 1011 1100 : mod reg r/m

BSR – Bit Scan Reverse

register1, register2 0000 1111 : 1011 1101 : 11 reg1 reg2

memory, register 0000 1111 : 1011 1101 : mod reg r/m

BSWAP – Byte Swap 0000 1111 : 1100 1 reg

BT – Bit Test

register, immediate 0000 1111 : 1011 1010 : 11 100 reg: imm8 data

memory, immediate 0000 1111 : 1011 1010 : mod 100 r/m : imm8 data

register1, register2 0000 1111 : 1010 0011 : 11 reg2 reg1

memory, reg 0000 1111 : 1010 0011 : mod reg r/m

BTC – Bit Test and Complement

register, immediate 0000 1111 : 1011 1010 : 11 111 reg: imm8 data

memory, immediate 0000 1111 : 1011 1010 : mod 111 r/m : imm8 data

register1, register2 0000 1111 : 1011 1011 : 11 reg2 reg1

memory, reg 0000 1111 : 1011 1011 : mod reg r/m

BTR – Bit Test and Reset

register, immediate 0000 1111 : 1011 1010 : 11 110 reg: imm8 data

memory, immediate 0000 1111 : 1011 1010 : mod 110 r/m : imm8 data

register1, register2 0000 1111 : 1011 0011 : 11 reg2 reg1

memory, reg 0000 1111 : 1011 0011 : mod reg r/m

BTS – Bit Test and Set

register, immediate 0000 1111 : 1011 1010 : 11 101 reg: imm8 data

memory, immediate 0000 1111 : 1011 1010 : mod 101 r/m : imm8 data

register1, register2 0000 1111 : 1010 1011 : 11 reg2 reg1

memory, reg 0000 1111 : 1010 1011 : mod reg r/m

CALL – Call Procedure (in same segment)

direct 1110 1000 : full displacement

register indirect 1111 1111 : 11 010 reg

memory indirect 1111 1111 : mod 010 r/m

CALL – Call Procedure (in other segment)

direct 1001 1010 : unsigned full offset, selector

indirect 1111 1111 : mod 011 r/m

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

Vol. 2D B-9

INSTRUCTION FORMATS AND ENCODINGS

CBW – Convert Byte to Word 1001 1000

CDQ – Convert Doubleword to Qword 1001 1001

CLC – Clear Carry Flag 1111 1000

CLD – Clear Direction Flag 1111 1100

CLI – Clear Interrupt Flag 1111 1010

CLTS – Clear Task-Switched Flag in CR0 0000 1111 : 0000 0110

CMC – Complement Carry Flag 1111 0101

CMP – Compare Two Operands

register1 with register2 0011 100w : 11 reg1 reg2

register2 with register1 0011 101w : 11 reg1 reg2

memory with register 0011 100w : mod reg r/m

register with memory 0011 101w : mod reg r/m

immediate with register 1000 00sw : 11 111 reg : immediate data

immediate with AL, AX, or EAX 0011 110w : immediate data

immediate with memory 1000 00sw : mod 111 r/m : immediate data

CMPS/CMPSB/CMPSW/CMPSD – Compare String Operands 1010 011w

CMPXCHG – Compare and Exchange

register1, register2 0000 1111 : 1011 000w : 11 reg2 reg1

memory, register 0000 1111 : 1011 000w : mod reg r/m

CPUID – CPU Identification 0000 1111 : 1010 0010

CWD – Convert Word to Doubleword 1001 1001

CWDE – Convert Word to Doubleword 1001 1000

DAA – Decimal Adjust AL after Addition 0010 0111

DAS – Decimal Adjust AL after Subtraction 0010 1111

DEC – Decrement by 1

register 1111 111w : 11 001 reg

register (alternate encoding) 0100 1 reg

memory 1111 111w : mod 001 r/m

DIV – Unsigned Divide

AL, AX, or EAX by register 1111 011w : 11 110 reg

AL, AX, or EAX by memory 1111 011w : mod 110 r/m

HLT – Halt 1111 0100

IDIV – Signed Divide

AL, AX, or EAX by register 1111 011w : 11 111 reg

AL, AX, or EAX by memory 1111 011w : mod 111 r/m

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

B-10 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

IMUL – Signed Multiply

AL, AX, or EAX with register 1111 011w : 11 101 reg

AL, AX, or EAX with memory 1111 011w : mod 101 reg

register1 with register2 0000 1111 : 1010 1111 : 11 : reg1 reg2

register with memory 0000 1111 : 1010 1111 : mod reg r/m

register1 with immediate to register2 0110 10s1 : 11 reg1 reg2 : immediate data

memory with immediate to register 0110 10s1 : mod reg r/m : immediate data

IN – Input From Port

fixed port 1110 010w : port number

variable port 1110 110w

INC – Increment by 1

reg 1111 111w : 11 000 reg

reg (alternate encoding) 0100 0 reg

memory 1111 111w : mod 000 r/m

INS – Input from DX Port 0110 110w

INT n – Interrupt Type n 1100 1101 : type

INT – Single-Step Interrupt 3 1100 1100

INTO – Interrupt 4 on Overflow 1100 1110

INVD – Invalidate Cache 0000 1111 : 0000 1000

INVLPG – Invalidate TLB Entry 0000 1111 : 0000 0001 : mod 111 r/m

INVPCID – Invalidate Process-Context Identifier 0110 0110:0000 1111:0011 1000:1000 0010: mod reg r/m

IRET/IRETD – Interrupt Return 1100 1111

Jcc – Jump if Condition is Met

8-bit displacement 0111 tttn : 8-bit displacement

full displacement 0000 1111 : 1000 tttn : full displacement

JCXZ/JECXZ – Jump on CX/ECX Zero
 Address-size prefix differentiates JCXZ

 and JECXZ
1110 0011 : 8-bit displacement

JMP – Unconditional Jump (to same segment)

short 1110 1011 : 8-bit displacement

direct 1110 1001 : full displacement

register indirect 1111 1111 : 11 100 reg

memory indirect 1111 1111 : mod 100 r/m

JMP – Unconditional Jump (to other segment)

direct intersegment 1110 1010 : unsigned full offset, selector

indirect intersegment 1111 1111 : mod 101 r/m

LAHF – Load Flags into AHRegister 1001 1111

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

Vol. 2D B-11

INSTRUCTION FORMATS AND ENCODINGS

LAR – Load Access Rights Byte

from register 0000 1111 : 0000 0010 : 11 reg1 reg2

from memory 0000 1111 : 0000 0010 : mod reg r/m

LDS – Load Pointer to DS 1100 0101 : modA,B reg r/m

LEA – Load Effective Address 1000 1101 : modA reg r/m

LEAVE – High Level Procedure Exit 1100 1001

LES – Load Pointer to ES 1100 0100 : modA,B reg r/m

LFS – Load Pointer to FS 0000 1111 : 1011 0100 : modA reg r/m

LGDT – Load Global Descriptor Table Register 0000 1111 : 0000 0001 : modA 010 r/m

LGS – Load Pointer to GS 0000 1111 : 1011 0101 : modA reg r/m

LIDT – Load Interrupt Descriptor Table Register 0000 1111 : 0000 0001 : modA 011 r/m

LLDT – Load Local Descriptor Table Register

LDTR from register 0000 1111 : 0000 0000 : 11 010 reg

LDTR from memory 0000 1111 : 0000 0000 : mod 010 r/m

LMSW – Load Machine Status Word

from register 0000 1111 : 0000 0001 : 11 110 reg

from memory 0000 1111 : 0000 0001 : mod 110 r/m

LOCK – Assert LOCK# Signal Prefix 1111 0000

LODS/LODSB/LODSW/LODSD – Load String Operand 1010 110w

LOOP – Loop Count 1110 0010 : 8-bit displacement

LOOPZ/LOOPE – Loop Count while Zero/Equal 1110 0001 : 8-bit displacement

LOOPNZ/LOOPNE – Loop Count while not Zero/Equal 1110 0000 : 8-bit displacement

LSL – Load Segment Limit

from register 0000 1111 : 0000 0011 : 11 reg1 reg2

from memory 0000 1111 : 0000 0011 : mod reg r/m

LSS – Load Pointer to SS 0000 1111 : 1011 0010 : modA reg r/m

LTR – Load Task Register

from register 0000 1111 : 0000 0000 : 11 011 reg

from memory 0000 1111 : 0000 0000 : mod 011 r/m

MOV – Move Data

register1 to register2 1000 100w : 11 reg1 reg2

register2 to register1 1000 101w : 11 reg1 reg2

memory to reg 1000 101w : mod reg r/m

reg to memory 1000 100w : mod reg r/m

immediate to register 1100 011w : 11 000 reg : immediate data

immediate to register (alternate encoding) 1011 w reg : immediate data

immediate to memory 1100 011w : mod 000 r/m : immediate data

memory to AL, AX, or EAX 1010 000w : full displacement

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

B-12 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

AL, AX, or EAX to memory 1010 001w : full displacement

MOV – Move to/from Control Registers

CR0 from register 0000 1111 : 0010 0010 : -- 000 reg

CR2 from register 0000 1111 : 0010 0010 : -- 010reg

CR3 from register 0000 1111 : 0010 0010 : -- 011 reg

CR4 from register 0000 1111 : 0010 0010 : -- 100 reg

register from CR0-CR4 0000 1111 : 0010 0000 : -- eee reg

MOV – Move to/from Debug Registers

DR0-DR3 from register 0000 1111 : 0010 0011 : -- eee reg

DR4-DR5 from register 0000 1111 : 0010 0011 : -- eee reg

DR6-DR7 from register 0000 1111 : 0010 0011 : -- eee reg

register from DR6-DR7 0000 1111 : 0010 0001 : -- eee reg

register from DR4-DR5 0000 1111 : 0010 0001 : -- eee reg

register from DR0-DR3 0000 1111 : 0010 0001 : -- eee reg

MOV – Move to/from Segment Registers

register to segment register 1000 1110 : 11 sreg3 reg

register to SS 1000 1110 : 11 sreg3 reg

memory to segment reg 1000 1110 : mod sreg3 r/m

memory to SS 1000 1110 : mod sreg3 r/m

segment register to register 1000 1100 : 11 sreg3 reg

segment register to memory 1000 1100 : mod sreg3 r/m

MOVBE – Move data after swapping bytes

memory to register 0000 1111 : 0011 1000:1111 0000 : mod reg r/m

register to memory 0000 1111 : 0011 1000:1111 0001 : mod reg r/m

MOVS/MOVSB/MOVSW/MOVSD – Move Data from String to
String

1010 010w

MOVSX – Move with Sign-Extend

memory to reg 0000 1111 : 1011 111w : mod reg r/m

MOVZX – Move with Zero-Extend

register2 to register1 0000 1111 : 1011 011w : 11 reg1 reg2

memory to register 0000 1111 : 1011 011w : mod reg r/m

MUL – Unsigned Multiply

AL, AX, or EAX with register 1111 011w : 11 100 reg

AL, AX, or EAX with memory 1111 011w : mod 100 r/m

NEG – Two's Complement Negation

register 1111 011w : 11 011 reg

memory 1111 011w : mod 011 r/m

NOP – No Operation 1001 0000

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

Vol. 2D B-13

INSTRUCTION FORMATS AND ENCODINGS

NOP – Multi-byte No Operation1

register 0000 1111 0001 1111 : 11 000 reg

memory 0000 1111 0001 1111 : mod 000 r/m

NOT – One's Complement Negation

register 1111 011w : 11 010 reg

memory 1111 011w : mod 010 r/m

OR – Logical Inclusive OR

register1 to register2 0000 100w : 11 reg1 reg2

register2 to register1 0000 101w : 11 reg1 reg2

memory to register 0000 101w : mod reg r/m

register to memory 0000 100w : mod reg r/m

immediate to register 1000 00sw : 11 001 reg : immediate data

immediate to AL, AX, or EAX 0000 110w : immediate data

immediate to memory 1000 00sw : mod 001 r/m : immediate data

OUT – Output to Port

fixed port 1110 011w : port number

variable port 1110 111w

OUTS – Output to DX Port 0110 111w

POP – Pop a Word from the Stack

register 1000 1111 : 11 000 reg

register (alternate encoding) 0101 1 reg

memory 1000 1111 : mod 000 r/m

POP – Pop a Segment Register from the Stack (Note: CS cannot be sreg2 in this usage.)

segment register DS, ES 000 sreg2 111

segment register SS 000 sreg2 111

segment register FS, GS 0000 1111: 10 sreg3 001

POPA/POPAD – Pop All General Registers 0110 0001

POPF/POPFD – Pop Stack into FLAGS or EFLAGS Register 1001 1101

PUSH – Push Operand onto the Stack

register 1111 1111 : 11 110 reg

register (alternate encoding) 0101 0 reg

memory 1111 1111 : mod 110 r/m

immediate 0110 10s0 : immediate data

PUSH – Push Segment Register onto the Stack

segment register CS,DS,ES,SS 000 sreg2 110

segment register FS,GS 0000 1111: 10 sreg3 000

PUSHA/PUSHAD – Push All General Registers 0110 0000

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

B-14 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

PUSHF/PUSHFD – Push Flags Register onto the Stack 1001 1100

RCL – Rotate thru Carry Left

register by 1 1101 000w : 11 010 reg

memory by 1 1101 000w : mod 010 r/m

register by CL 1101 001w : 11 010 reg

memory by CL 1101 001w : mod 010 r/m

register by immediate count 1100 000w : 11 010 reg : imm8 data

memory by immediate count 1100 000w : mod 010 r/m : imm8 data

RCR – Rotate thru Carry Right

register by 1 1101 000w : 11 011 reg

memory by 1 1101 000w : mod 011 r/m

register by CL 1101 001w : 11 011 reg

memory by CL 1101 001w : mod 011 r/m

register by immediate count 1100 000w : 11 011 reg : imm8 data

memory by immediate count 1100 000w : mod 011 r/m : imm8 data

RDMSR – Read from Model-Specific Register 0000 1111 : 0011 0010

RDPMC – Read Performance Monitoring Counters 0000 1111 : 0011 0011

RDTSC – Read Time-Stamp Counter 0000 1111 : 0011 0001

RDTSCP – Read Time-Stamp Counter and Processor ID 0000 1111 : 0000 0001: 1111 1001

REP INS – Input String 1111 0011 : 0110 110w

REP LODS – Load String 1111 0011 : 1010 110w

REP MOVS – Move String 1111 0011 : 1010 010w

REP OUTS – Output String 1111 0011 : 0110 111w

REP STOS – Store String 1111 0011 : 1010 101w

REPE CMPS – Compare String 1111 0011 : 1010 011w

REPE SCAS – Scan String 1111 0011 : 1010 111w

REPNE CMPS – Compare String 1111 0010 : 1010 011w

REPNE SCAS – Scan String 1111 0010 : 1010 111w

RET – Return from Procedure (to same segment)

no argument 1100 0011

adding immediate to SP 1100 0010 : 16-bit displacement

RET – Return from Procedure (to other segment)

intersegment 1100 1011

adding immediate to SP 1100 1010 : 16-bit displacement

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

Vol. 2D B-15

INSTRUCTION FORMATS AND ENCODINGS

ROL – Rotate Left

register by 1 1101 000w : 11 000 reg

memory by 1 1101 000w : mod 000 r/m

register by CL 1101 001w : 11 000 reg

memory by CL 1101 001w : mod 000 r/m

register by immediate count 1100 000w : 11 000 reg : imm8 data

memory by immediate count 1100 000w : mod 000 r/m : imm8 data

ROR – Rotate Right

register by 1 1101 000w : 11 001 reg

memory by 1 1101 000w : mod 001 r/m

register by CL 1101 001w : 11 001 reg

memory by CL 1101 001w : mod 001 r/m

register by immediate count 1100 000w : 11 001 reg : imm8 data

memory by immediate count 1100 000w : mod 001 r/m : imm8 data

RSM – Resume from System Management Mode 0000 1111 : 1010 1010

SAHF – Store AH into Flags 1001 1110

SAL – Shift Arithmetic Left same instruction as SHL

SAR – Shift Arithmetic Right

register by 1 1101 000w : 11 111 reg

memory by 1 1101 000w : mod 111 r/m

register by CL 1101 001w : 11 111 reg

memory by CL 1101 001w : mod 111 r/m

register by immediate count 1100 000w : 11 111 reg : imm8 data

memory by immediate count 1100 000w : mod 111 r/m : imm8 data

SBB – Integer Subtraction with Borrow

register1 to register2 0001 100w : 11 reg1 reg2

register2 to register1 0001 101w : 11 reg1 reg2

memory to register 0001 101w : mod reg r/m

register to memory 0001 100w : mod reg r/m

immediate to register 1000 00sw : 11 011 reg : immediate data

immediate to AL, AX, or EAX 0001 110w : immediate data

immediate to memory 1000 00sw : mod 011 r/m : immediate data

SCAS/SCASB/SCASW/SCASD – Scan String 1010 111w

SETcc – Byte Set on Condition

register 0000 1111 : 1001 tttn : 11 000 reg

memory 0000 1111 : 1001 tttn : mod 000 r/m

SGDT – Store Global Descriptor Table Register 0000 1111 : 0000 0001 : modA 000 r/m

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

B-16 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

SHL – Shift Left

register by 1 1101 000w : 11 100 reg

memory by 1 1101 000w : mod 100 r/m

register by CL 1101 001w : 11 100 reg

memory by CL 1101 001w : mod 100 r/m

register by immediate count 1100 000w : 11 100 reg : imm8 data

memory by immediate count 1100 000w : mod 100 r/m : imm8 data

SHLD – Double Precision Shift Left

register by immediate count 0000 1111 : 1010 0100 : 11 reg2 reg1 : imm8

memory by immediate count 0000 1111 : 1010 0100 : mod reg r/m : imm8

register by CL 0000 1111 : 1010 0101 : 11 reg2 reg1

memory by CL 0000 1111 : 1010 0101 : mod reg r/m

SHR – Shift Right

register by 1 1101 000w : 11 101 reg

memory by 1 1101 000w : mod 101 r/m

register by CL 1101 001w : 11 101 reg

memory by CL 1101 001w : mod 101 r/m

register by immediate count 1100 000w : 11 101 reg : imm8 data

memory by immediate count 1100 000w : mod 101 r/m : imm8 data

SHRD – Double Precision Shift Right

register by immediate count 0000 1111 : 1010 1100 : 11 reg2 reg1 : imm8

memory by immediate count 0000 1111 : 1010 1100 : mod reg r/m : imm8

register by CL 0000 1111 : 1010 1101 : 11 reg2 reg1

memory by CL 0000 1111 : 1010 1101 : mod reg r/m

SIDT – Store Interrupt Descriptor Table Register 0000 1111 : 0000 0001 : modA 001 r/m

SLDT – Store Local Descriptor Table Register

to register 0000 1111 : 0000 0000 : 11 000 reg

to memory 0000 1111 : 0000 0000 : mod 000 r/m

SMSW – Store Machine Status Word

to register 0000 1111 : 0000 0001 : 11 100 reg

to memory 0000 1111 : 0000 0001 : mod 100 r/m

STC – Set Carry Flag 1111 1001

STD – Set Direction Flag 1111 1101

STI – Set Interrupt Flag 1111 1011

STOS/STOSB/STOSW/STOSD – Store String Data 1010 101w

STR – Store Task Register

to register 0000 1111 : 0000 0000 : 11 001 reg

to memory 0000 1111 : 0000 0000 : mod 001 r/m

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

Vol. 2D B-17

INSTRUCTION FORMATS AND ENCODINGS

SUB – Integer Subtraction

register1 to register2 0010 100w : 11 reg1 reg2

register2 to register1 0010 101w : 11 reg1 reg2

memory to register 0010 101w : mod reg r/m

register to memory 0010 100w : mod reg r/m

immediate to register 1000 00sw : 11 101 reg : immediate data

immediate to AL, AX, or EAX 0010 110w : immediate data

immediate to memory 1000 00sw : mod 101 r/m : immediate data

TEST – Logical Compare

register1 and register2 1000 010w : 11 reg1 reg2

memory and register 1000 010w : mod reg r/m

immediate and register 1111 011w : 11 000 reg : immediate data

immediate and AL, AX, or EAX 1010 100w : immediate data

immediate and memory 1111 011w : mod 000 r/m : immediate data

UD0 – Undefined instruction 0000 1111 : 1111 1111

UD1 – Undefined instruction 0000 1111 : 0000 1011

UD2 – Undefined instruction 0000 FFFF : 0000 1011

VERR – Verify a Segment for Reading

register 0000 1111 : 0000 0000 : 11 100 reg

memory 0000 1111 : 0000 0000 : mod 100 r/m

VERW – Verify a Segment for Writing

register 0000 1111 : 0000 0000 : 11 101 reg

memory 0000 1111 : 0000 0000 : mod 101 r/m

WAIT – Wait 1001 1011

WBINVD – Writeback and Invalidate Data Cache 0000 1111 : 0000 1001

WRMSR – Write to Model-Specific Register 0000 1111 : 0011 0000

XADD – Exchange and Add

register1, register2 0000 1111 : 1100 000w : 11 reg2 reg1

memory, reg 0000 1111 : 1100 000w : mod reg r/m

XCHG – Exchange Register/Memory with Register

register1 with register2 1000 011w : 11 reg1 reg2

AX or EAX with reg 1001 0 reg

memory with reg 1000 011w : mod reg r/m

XLAT/XLATB – Table Look-up Translation 1101 0111

XOR – Logical Exclusive OR

register1 to register2 0011 000w : 11 reg1 reg2

register2 to register1 0011 001w : 11 reg1 reg2

memory to register 0011 001w : mod reg r/m

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

B-18 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

B.2.1 General Purpose Instruction Formats and Encodings for 64-Bit Mode
Table B-15 shows machine instruction formats and encodings for general purpose instructions in 64-bit mode.

register to memory 0011 000w : mod reg r/m

immediate to register 1000 00sw : 11 110 reg : immediate data

immediate to AL, AX, or EAX 0011 010w : immediate data

immediate to memory 1000 00sw : mod 110 r/m : immediate data

Prefix Bytes

address size 0110 0111

LOCK 1111 0000

operand size 0110 0110

CS segment override 0010 1110

DS segment override 0011 1110

ES segment override 0010 0110

FS segment override 0110 0100

GS segment override 0110 0101

SS segment override 0011 0110

NOTES:
1. The multi-byte NOP instruction does not alter the content of the register and will not issue a memory operation.

Table B-14. Special Symbols
Symbol Application

S If the value of REX.W. is 1, it overrides the presence of 66H.

w The value of bit W. in REX is has no effect.

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode

Instruction and Format Encoding

ADC – ADD with Carry

register1 to register2 0100 0R0B : 0001 000w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B : 0001 0001 : 11 qwordreg1 qwordreg2

register2 to register1 0100 0R0B : 0001 001w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B : 0001 0011 : 11 qwordreg1 qwordreg2

memory to register 0100 0RXB : 0001 001w : mod reg r/m

memory to qwordregister 0100 1RXB : 0001 0011 : mod qwordreg r/m

register to memory 0100 0RXB : 0001 000w : mod reg r/m

qwordregister to memory 0100 1RXB : 0001 0001 : mod qwordreg r/m

immediate to register 0100 000B : 1000 00sw : 11 010 reg : immediate

immediate to qwordregister 0100 100B : 1000 0001 : 11 010 qwordreg : imm32

immediate to qwordregister 0100 1R0B : 1000 0011 : 11 010 qwordreg : imm8

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

Vol. 2D B-19

INSTRUCTION FORMATS AND ENCODINGS

immediate to AL, AX, or EAX 0001 010w : immediate data

immediate to RAX 0100 1000 : 0000 0101 : imm32

immediate to memory 0100 00XB : 1000 00sw : mod 010 r/m : immediate

immediate32 to memory64 0100 10XB : 1000 0001 : mod 010 r/m : imm32

immediate8 to memory64 0100 10XB : 1000 0031 : mod 010 r/m : imm8

ADD – Add

register1 to register2 0100 0R0B : 0000 000w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B 0000 0000 : 11 qwordreg1 qwordreg2

register2 to register1 0100 0R0B : 0000 001w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B 0000 0010 : 11 qwordreg1 qwordreg2

memory to register 0100 0RXB : 0000 001w : mod reg r/m

memory64 to qwordregister 0100 1RXB : 0000 0000 : mod qwordreg r/m

register to memory 0100 0RXB : 0000 000w : mod reg r/m

qwordregister to memory64 0100 1RXB : 0000 0011 : mod qwordreg r/m

immediate to register 0100 0000B : 1000 00sw : 11 000 reg : immediate data

immediate32 to qwordregister 0100 100B : 1000 0001 : 11 010 qwordreg : imm

immediate to AL, AX, or EAX 0000 010w : immediate8

immediate to RAX 0100 1000 : 0000 0101 : imm32

immediate to memory 0100 00XB : 1000 00sw : mod 000 r/m : immediate

immediate32 to memory64 0100 10XB : 1000 0001 : mod 010 r/m : imm32

immediate8 to memory64 0100 10XB : 1000 0011 : mod 010 r/m : imm8

AND – Logical AND

register1 to register2 0100 0R0B 0010 000w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B 0010 0001 : 11 qwordreg1 qwordreg2

register2 to register1 0100 0R0B 0010 001w : 11 reg1 reg2

register1 to register2 0100 1R0B 0010 0011 : 11 qwordreg1 qwordreg2

memory to register 0100 0RXB 0010 001w : mod reg r/m

memory64 to qwordregister 0100 1RXB : 0010 0011 : mod qwordreg r/m

register to memory 0100 0RXB : 0010 000w : mod reg r/m

qwordregister to memory64 0100 1RXB : 0010 0001 : mod qwordreg r/m

immediate to register 0100 000B : 1000 00sw : 11 100 reg : immediate

immediate32 to qwordregister 0100 100B 1000 0001 : 11 100 qwordreg : imm32

immediate to AL, AX, or EAX 0010 010w : immediate

immediate32 to RAX 0100 1000 0010 1001 : imm32

immediate to memory 0100 00XB : 1000 00sw : mod 100 r/m : immediate

immediate32 to memory64 0100 10XB : 1000 0001 : mod 100 r/m : immediate32

immediate8 to memory64 0100 10XB : 1000 0011 : mod 100 r/m : imm8

BSF – Bit Scan Forward

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding

B-20 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

register1, register2 0100 0R0B 0000 1111 : 1011 1100 : 11 reg1 reg2

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 1100 : 11 qwordreg1
qwordreg2

memory, register 0100 0RXB 0000 1111 : 1011 1100 : mod reg r/m

memory64, qwordregister 0100 1RXB 0000 1111 : 1011 1100 : mod qwordreg r/m

BSR – Bit Scan Reverse

register1, register2 0100 0R0B 0000 1111 : 1011 1101 : 11 reg1 reg2

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 1101 : 11 qwordreg1
qwordreg2

memory, register 0100 0RXB 0000 1111 : 1011 1101 : mod reg r/m

memory64, qwordregister 0100 1RXB 0000 1111 : 1011 1101 : mod qwordreg r/m

BSWAP – Byte Swap 0000 1111 : 1100 1 reg

BSWAP – Byte Swap 0100 100B 0000 1111 : 1100 1 qwordreg

BT – Bit Test

register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 100 reg: imm8

qwordregister, immediate8 0100 100B 1111 : 1011 1010 : 11 100 qwordreg: imm8 data

memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod 100 r/m : imm8

memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod 100 r/m : imm8 data

register1, register2 0100 0R0B 0000 1111 : 1010 0011 : 11 reg2 reg1

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1010 0011 : 11 qwordreg2
qwordreg1

memory, reg 0100 0RXB 0000 1111 : 1010 0011 : mod reg r/m

memory, qwordreg 0100 1RXB 0000 1111 : 1010 0011 : mod qwordreg r/m

BTC – Bit Test and Complement

register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 111 reg: imm8

qwordregister, immediate8 0100 100B 0000 1111 : 1011 1010 : 11 111 qwordreg: imm8

memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod 111 r/m : imm8

memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod 111 r/m : imm8

register1, register2 0100 0R0B 0000 1111 : 1011 1011 : 11 reg2 reg1

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 1011 : 11 qwordreg2
qwordreg1

memory, register 0100 0RXB 0000 1111 : 1011 1011 : mod reg r/m

memory, qwordreg 0100 1RXB 0000 1111 : 1011 1011 : mod qwordreg r/m

BTR – Bit Test and Reset

register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 110 reg: imm8

qwordregister, immediate8 0100 100B 0000 1111 : 1011 1010 : 11 110 qwordreg: imm8

memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod 110 r/m : imm8

memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod 110 r/m : imm8

register1, register2 0100 0R0B 0000 1111 : 1011 0011 : 11 reg2 reg1

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding

Vol. 2D B-21

INSTRUCTION FORMATS AND ENCODINGS

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 0011 : 11 qwordreg2
qwordreg1

memory, register 0100 0RXB 0000 1111 : 1011 0011 : mod reg r/m

memory64, qwordreg 0100 1RXB 0000 1111 : 1011 0011 : mod qwordreg r/m

BTS – Bit Test and Set

register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 101 reg: imm8

qwordregister, immediate8 0100 100B 0000 1111 : 1011 1010 : 11 101 qwordreg: imm8

memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod 101 r/m : imm8

memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod 101 r/m : imm8

register1, register2 0100 0R0B 0000 1111 : 1010 1011 : 11 reg2 reg1

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1010 1011 : 11 qwordreg2
qwordreg1

memory, register 0100 0RXB 0000 1111 : 1010 1011 : mod reg r/m

memory64, qwordreg 0100 1RXB 0000 1111 : 1010 1011 : mod qwordreg r/m

CALL – Call Procedure (in same segment)

direct 1110 1000 : displacement32

 register indirect 0100 WR00w 1111 1111 : 11 010 reg

memory indirect 0100 W0XBw 1111 1111 : mod 010 r/m

CALL – Call Procedure (in other segment)

indirect 1111 1111 : mod 011 r/m

indirect 0100 10XB 0100 1000 1111 1111 : mod 011 r/m

CBW – Convert Byte to Word 1001 1000

CDQ – Convert Doubleword to Qword+ 1001 1001

CDQE – RAX, Sign-Extend of EAX 0100 1000 1001 1001

CLC – Clear Carry Flag 1111 1000

CLD – Clear Direction Flag 1111 1100

CLI – Clear Interrupt Flag 1111 1010

CLTS – Clear Task-Switched Flag in CR0 0000 1111 : 0000 0110

CMC – Complement Carry Flag 1111 0101

CMP – Compare Two Operands

register1 with register2 0100 0R0B 0011 100w : 11 reg1 reg2

qwordregister1 with qwordregister2 0100 1R0B 0011 1001 : 11 qwordreg1 qwordreg2

register2 with register1 0100 0R0B 0011 101w : 11 reg1 reg2

qwordregister2 with qwordregister1 0100 1R0B 0011 101w : 11 qwordreg1 qwordreg2

memory with register 0100 0RXB 0011 100w : mod reg r/m

memory64 with qwordregister 0100 1RXB 0011 1001 : mod qwordreg r/m

register with memory 0100 0RXB 0011 101w : mod reg r/m

qwordregister with memory64 0100 1RXB 0011 101w1 : mod qwordreg r/m

immediate with register 0100 000B 1000 00sw : 11 111 reg : imm

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding

B-22 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

immediate32 with qwordregister 0100 100B 1000 0001 : 11 111 qwordreg : imm64

immediate with AL, AX, or EAX 0011 110w : imm

immediate32 with RAX 0100 1000 0011 1101 : imm32

immediate with memory 0100 00XB 1000 00sw : mod 111 r/m : imm

immediate32 with memory64 0100 1RXB 1000 0001 : mod 111 r/m : imm64

immediate8 with memory64 0100 1RXB 1000 0011 : mod 111 r/m : imm8

CMPS/CMPSB/CMPSW/CMPSD/CMPSQ – Compare String Operands

compare string operands [X at DS:(E)SI with Y at ES:(E)DI] 1010 011w

qword at address RSI with qword at address RDI 0100 1000 1010 0111

CMPXCHG – Compare and Exchange

register1, register2 0000 1111 : 1011 000w : 11 reg2 reg1

byteregister1, byteregister2 0100 000B 0000 1111 : 1011 0000 : 11 bytereg2 reg1

qwordregister1, qwordregister2 0100 100B 0000 1111 : 1011 0001 : 11 qwordreg2 reg1

memory, register 0000 1111 : 1011 000w : mod reg r/m

memory8, byteregister 0100 00XB 0000 1111 : 1011 0000 : mod bytereg r/m

memory64, qwordregister 0100 10XB 0000 1111 : 1011 0001 : mod qwordreg r/m

CPUID – CPU Identification 0000 1111 : 1010 0010

CQO – Sign-Extend RAX 0100 1000 1001 1001

CWD – Convert Word to Doubleword 1001 1001

CWDE – Convert Word to Doubleword 1001 1000

DEC – Decrement by 1

register 0100 000B 1111 111w : 11 001 reg

qwordregister 0100 100B 1111 1111 : 11 001 qwordreg

memory 0100 00XB 1111 111w : mod 001 r/m

memory64 0100 10XB 1111 1111 : mod 001 r/m

DIV – Unsigned Divide

AL, AX, or EAX by register 0100 000B 1111 011w : 11 110 reg

Divide RDX:RAX by qwordregister 0100 100B 1111 0111 : 11 110 qwordreg

AL, AX, or EAX by memory 0100 00XB 1111 011w : mod 110 r/m

Divide RDX:RAX by memory64 0100 10XB 1111 0111 : mod 110 r/m

ENTER – Make Stack Frame for High Level Procedure 1100 1000 : 16-bit displacement : 8-bit level (L)

HLT – Halt 1111 0100

IDIV – Signed Divide

AL, AX, or EAX by register 0100 000B 1111 011w : 11 111 reg

RDX:RAX by qwordregister 0100 100B 1111 0111 : 11 111 qwordreg

AL, AX, or EAX by memory 0100 00XB 1111 011w : mod 111 r/m

RDX:RAX by memory64 0100 10XB 1111 0111 : mod 111 r/m

IMUL – Signed Multiply

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding

Vol. 2D B-23

INSTRUCTION FORMATS AND ENCODINGS

AL, AX, or EAX with register 0100 000B 1111 011w : 11 101 reg

RDX:RAX := RAX with qwordregister 0100 100B 1111 0111 : 11 101 qwordreg

AL, AX, or EAX with memory 0100 00XB 1111 011w : mod 101 r/m

RDX:RAX := RAX with memory64 0100 10XB 1111 0111 : mod 101 r/m

register1 with register2 0000 1111 : 1010 1111 : 11 : reg1 reg2

qwordregister1 := qwordregister1 with qwordregister2 0100 1R0B 0000 1111 : 1010 1111 : 11 : qwordreg1
qwordreg2

register with memory 0100 0RXB 0000 1111 : 1010 1111 : mod reg r/m

qwordregister := qwordregister with memory64 0100 1RXB 0000 1111 : 1010 1111 : mod qwordreg r/m

register1 with immediate to register2 0100 0R0B 0110 10s1 : 11 reg1 reg2 : imm

qwordregister1 := qwordregister2 with sign-extended
immediate8

0100 1R0B 0110 1011 : 11 qwordreg1 qwordreg2 : imm8

qwordregister1 := qwordregister2 with immediate32 0100 1R0B 0110 1001 : 11 qwordreg1 qwordreg2 : imm32

memory with immediate to register 0100 0RXB 0110 10s1 : mod reg r/m : imm

qwordregister := memory64 with sign-extended immediate8 0100 1RXB 0110 1011 : mod qwordreg r/m : imm8

qwordregister := memory64 with immediate32 0100 1RXB 0110 1001 : mod qwordreg r/m : imm32

IN – Input From Port

fixed port 1110 010w : port number

variable port 1110 110w

INC – Increment by 1

reg 0100 000B 1111 111w : 11 000 reg

qwordreg 0100 100B 1111 1111 : 11 000 qwordreg

memory 0100 00XB 1111 111w : mod 000 r/m

memory64 0100 10XB 1111 1111 : mod 000 r/m

INS – Input from DX Port 0110 110w

INT n – Interrupt Type n 1100 1101 : type

INT – Single-Step Interrupt 3 1100 1100

INTO – Interrupt 4 on Overflow 1100 1110

INVD – Invalidate Cache 0000 1111 : 0000 1000

INVLPG – Invalidate TLB Entry 0000 1111 : 0000 0001 : mod 111 r/m

INVPCID – Invalidate Process-Context Identifier 0110 0110:0000 1111:0011 1000:1000 0010: mod reg r/m

IRETO – Interrupt Return 1100 1111

Jcc – Jump if Condition is Met

8-bit displacement 0111 tttn : 8-bit displacement

displacements (excluding 16-bit relative offsets) 0000 1111 : 1000 tttn : displacement32

JCXZ/JECXZ – Jump on CX/ECX Zero

Address-size prefix differentiates JCXZ and JECXZ 1110 0011 : 8-bit displacement

JMP – Unconditional Jump (to same segment)

short 1110 1011 : 8-bit displacement

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding

B-24 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

direct 1110 1001 : displacement32

register indirect 0100 W00Bw : 1111 1111 : 11 100 reg

memory indirect 0100 W0XBw : 1111 1111 : mod 100 r/m

JMP – Unconditional Jump (to other segment)

indirect intersegment 0100 00XB : 1111 1111 : mod 101 r/m

64-bit indirect intersegment 0100 10XB : 1111 1111 : mod 101 r/m

LAR – Load Access Rights Byte

from register 0100 0R0B : 0000 1111 : 0000 0010 : 11 reg1 reg2

from dwordregister to qwordregister, masked by 00FxFF00H 0100 WR0B : 0000 1111 : 0000 0010 : 11 qwordreg1
dwordreg2

from memory 0100 0RXB : 0000 1111 : 0000 0010 : mod reg r/m

from memory32 to qwordregister, masked by 00FxFF00H 0100 WRXB 0000 1111 : 0000 0010 : mod r/m

LEA – Load Effective Address

in wordregister/dwordregister 0100 0RXB : 1000 1101 : modA reg r/m

in qwordregister 0100 1RXB : 1000 1101 : modA qwordreg r/m

LEAVE – High Level Procedure Exit 1100 1001

LFS – Load Pointer to FS

FS:r16/r32 with far pointer from memory 0100 0RXB : 0000 1111 : 1011 0100 : modA reg r/m

FS:r64 with far pointer from memory 0100 1RXB : 0000 1111 : 1011 0100 : modA qwordreg r/m

LGDT – Load Global Descriptor Table Register 0100 10XB : 0000 1111 : 0000 0001 : modA 010 r/m

LGS – Load Pointer to GS

GS:r16/r32 with far pointer from memory 0100 0RXB : 0000 1111 : 1011 0101 : modA reg r/m

GS:r64 with far pointer from memory 0100 1RXB : 0000 1111 : 1011 0101 : modA qwordreg r/m

LIDT – Load Interrupt Descriptor Table Register 0100 10XB : 0000 1111 : 0000 0001 : modA 011 r/m

LLDT – Load Local Descriptor Table Register

LDTR from register 0100 000B : 0000 1111 : 0000 0000 : 11 010 reg

LDTR from memory 0100 00XB :0000 1111 : 0000 0000 : mod 010 r/m

LMSW – Load Machine Status Word

from register 0100 000B : 0000 1111 : 0000 0001 : 11 110 reg

from memory 0100 00XB :0000 1111 : 0000 0001 : mod 110 r/m

LOCK – Assert LOCK# Signal Prefix 1111 0000

LODS/LODSB/LODSW/LODSD/LODSQ – Load String Operand

at DS:(E)SI to AL/EAX/EAX 1010 110w

at (R)SI to RAX 0100 1000 1010 1101

LOOP – Loop Count

if count ≠ 0, 8-bit displacement 1110 0010

if count ≠ 0, RIP + 8-bit displacement sign-extended to 64-bits 0100 1000 1110 0010

LOOPE – Loop Count while Zero/Equal

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding

Vol. 2D B-25

INSTRUCTION FORMATS AND ENCODINGS

if count ≠ 0 & ZF =1, 8-bit displacement 1110 0001

if count ≠ 0 & ZF = 1, RIP + 8-bit displacement sign-extended to
64-bits

0100 1000 1110 0001

LOOPNE/LOOPNZ – Loop Count while not Zero/Equal

if count ≠ 0 & ZF = 0, 8-bit displacement 1110 0000

if count ≠ 0 & ZF = 0, RIP + 8-bit displacement sign-extended to
64-bits

0100 1000 1110 0000

LSL – Load Segment Limit

from register 0000 1111 : 0000 0011 : 11 reg1 reg2

from qwordregister 0100 1R00 0000 1111 : 0000 0011 : 11 qwordreg1 reg2

from memory16 0000 1111 : 0000 0011 : mod reg r/m

from memory64 0100 1RXB 0000 1111 : 0000 0011 : mod qwordreg r/m

LSS – Load Pointer to SS

SS:r16/r32 with far pointer from memory 0100 0RXB : 0000 1111 : 1011 0010 : modA reg r/m

SS:r64 with far pointer from memory 0100 1WXB : 0000 1111 : 1011 0010 : modA qwordreg r/m

LTR – Load Task Register

from register 0100 0R00 : 0000 1111 : 0000 0000 : 11 011 reg

from memory 0100 00XB : 0000 1111 : 0000 0000 : mod 011 r/m

MOV – Move Data

register1 to register2 0100 0R0B : 1000 100w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B 1000 1001 : 11 qwordeg1 qwordreg2

register2 to register1 0100 0R0B : 1000 101w : 11 reg1 reg2

qwordregister2 to qwordregister1 0100 1R0B 1000 1011 : 11 qwordreg1 qwordreg2

memory to reg 0100 0RXB : 1000 101w : mod reg r/m

memory64 to qwordregister 0100 1RXB 1000 1011 : mod qwordreg r/m

reg to memory 0100 0RXB : 1000 100w : mod reg r/m

qwordregister to memory64 0100 1RXB 1000 1001 : mod qwordreg r/m

immediate to register 0100 000B : 1100 011w : 11 000 reg : imm

immediate32 to qwordregister (zero extend) 0100 100B 1100 0111 : 11 000 qwordreg : imm32

immediate to register (alternate encoding) 0100 000B : 1011 w reg : imm

immediate64 to qwordregister (alternate encoding) 0100 100B 1011 1000 reg : imm64

immediate to memory 0100 00XB : 1100 011w : mod 000 r/m : imm

immediate32 to memory64 (zero extend) 0100 10XB 1100 0111 : mod 000 r/m : imm32

memory to AL, AX, or EAX 0100 0000 : 1010 000w : displacement

memory64 to RAX 0100 1000 1010 0001 : displacement64

AL, AX, or EAX to memory 0100 0000 : 1010 001w : displacement

RAX to memory64 0100 1000 1010 0011 : displacement64

MOV – Move to/from Control Registers

CR0-CR4 from register 0100 0R0B : 0000 1111 : 0010 0010 : 11 eee reg (eee = CR#)

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding

B-26 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

CRx from qwordregister 0100 1R0B : 0000 1111 : 0010 0010 : 11 eee qwordreg (Reee
= CR#)

register from CR0-CR4 0100 0R0B : 0000 1111 : 0010 0000 : 11 eee reg (eee = CR#)

qwordregister from CRx 0100 1R0B 0000 1111 : 0010 0000 : 11 eee qwordreg

(Reee = CR#)

MOV – Move to/from Debug Registers

DR0-DR7 from register 0000 1111 : 0010 0011 : 11 eee reg (eee = DR#)

DR0-DR7 from quadregister 0100 10OB 0000 1111 : 0010 0011 : 11 eee reg (eee = DR#)

register from DR0-DR7 0000 1111 : 0010 0001 : 11 eee reg (eee = DR#)

quadregister from DR0-DR7 0100 10OB 0000 1111 : 0010 0001 : 11 eee quadreg (eee =
DR#)

MOV – Move to/from Segment Registers

register to segment register 0100 W00Bw : 1000 1110 : 11 sreg reg

register to SS 0100 000B : 1000 1110 : 11 sreg reg

memory to segment register 0100 00XB : 1000 1110 : mod sreg r/m

memory64 to segment register (lower 16 bits) 0100 10XB 1000 1110 : mod sreg r/m

memory to SS 0100 00XB : 1000 1110 : mod sreg r/m

segment register to register 0100 000B : 1000 1100 : 11 sreg reg

segment register to qwordregister (zero extended) 0100 100B 1000 1100 : 11 sreg qwordreg

segment register to memory 0100 00XB : 1000 1100 : mod sreg r/m

segment register to memory64 (zero extended) 0100 10XB 1000 1100 : mod sreg3 r/m

MOVBE – Move data after swapping bytes

memory to register 0100 0RXB : 0000 1111 : 0011 1000:1111 0000 : mod reg r/m

memory64 to qwordregister 0100 1RXB : 0000 1111 : 0011 1000:1111 0000 : mod reg r/m

register to memory 0100 0RXB :0000 1111 : 0011 1000:1111 0001 : mod reg r/m

qwordregister to memory64 0100 1RXB :0000 1111 : 0011 1000:1111 0001 : mod reg r/m

MOVS/MOVSB/MOVSW/MOVSD/MOVSQ – Move Data from String to String

Move data from string to string 1010 010w

Move data from string to string (qword) 0100 1000 1010 0101

MOVSX/MOVSXD – Move with Sign-Extend

register2 to register1 0100 0R0B : 0000 1111 : 1011 111w : 11 reg1 reg2

byteregister2 to qwordregister1 (sign-extend) 0100 1R0B 0000 1111 : 1011 1110 : 11 quadreg1 bytereg2

wordregister2 to qwordregister1 0100 1R0B 0000 1111 : 1011 1111 : 11 quadreg1 wordreg2

dwordregister2 to qwordregister1 0100 1R0B 0110 0011 : 11 quadreg1 dwordreg2

memory to register 0100 0RXB : 0000 1111 : 1011 111w : mod reg r/m

memory8 to qwordregister (sign-extend) 0100 1RXB 0000 1111 : 1011 1110 : mod qwordreg r/m

memory16 to qwordregister 0100 1RXB 0000 1111 : 1011 1111 : mod qwordreg r/m

memory32 to qwordregister 0100 1RXB 0110 0011 : mod qwordreg r/m

MOVZX – Move with Zero-Extend

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding

Vol. 2D B-27

INSTRUCTION FORMATS AND ENCODINGS

register2 to register1 0100 0R0B : 0000 1111 : 1011 011w : 11 reg1 reg2

dwordregister2 to qwordregister1 0100 1R0B 0000 1111 : 1011 0111 : 11 qwordreg1
dwordreg2

memory to register 0100 0RXB : 0000 1111 : 1011 011w : mod reg r/m

memory32 to qwordregister 0100 1RXB 0000 1111 : 1011 0111 : mod qwordreg r/m

MUL – Unsigned Multiply

AL, AX, or EAX with register 0100 000B : 1111 011w : 11 100 reg

RAX with qwordregister (to RDX:RAX) 0100 100B 1111 0111 : 11 100 qwordreg

AL, AX, or EAX with memory 0100 00XB 1111 011w : mod 100 r/m

RAX with memory64 (to RDX:RAX) 0100 10XB 1111 0111 : mod 100 r/m

NEG – Two's Complement Negation

register 0100 000B : 1111 011w : 11 011 reg

qwordregister 0100 100B 1111 0111 : 11 011 qwordreg

memory 0100 00XB : 1111 011w : mod 011 r/m

memory64 0100 10XB 1111 0111 : mod 011 r/m

NOP – No Operation 1001 0000

NOT – One's Complement Negation

register 0100 000B : 1111 011w : 11 010 reg

qwordregister 0100 000B 1111 0111 : 11 010 qwordreg

memory 0100 00XB : 1111 011w : mod 010 r/m

memory64 0100 1RXB 1111 0111 : mod 010 r/m

OR – Logical Inclusive OR

register1 to register2 0000 100w : 11 reg1 reg2

byteregister1 to byteregister2 0100 0R0B 0000 1000 : 11 bytereg1 bytereg2

qwordregister1 to qwordregister2 0100 1R0B 0000 1001 : 11 qwordreg1 qwordreg2

register2 to register1 0000 101w : 11 reg1 reg2

byteregister2 to byteregister1 0100 0R0B 0000 1010 : 11 bytereg1 bytereg2

qwordregister2 to qwordregister1 0100 0R0B 0000 1011 : 11 qwordreg1 qwordreg2

memory to register 0000 101w : mod reg r/m

memory8 to byteregister 0100 0RXB 0000 1010 : mod bytereg r/m

memory8 to qwordregister 0100 0RXB 0000 1011 : mod qwordreg r/m

register to memory 0000 100w : mod reg r/m

byteregister to memory8 0100 0RXB 0000 1000 : mod bytereg r/m

qwordregister to memory64 0100 1RXB 0000 1001 : mod qwordreg r/m

immediate to register 1000 00sw : 11 001 reg : imm

immediate8 to byteregister 0100 000B 1000 0000 : 11 001 bytereg : imm8

immediate32 to qwordregister 0100 000B 1000 0001 : 11 001 qwordreg : imm32

immediate8 to qwordregister 0100 000B 1000 0011 : 11 001 qwordreg : imm8

immediate to AL, AX, or EAX 0000 110w : imm

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding

B-28 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

immediate64 to RAX 0100 1000 0000 1101 : imm64

immediate to memory 1000 00sw : mod 001 r/m : imm

immediate8 to memory8 0100 00XB 1000 0000 : mod 001 r/m : imm8

immediate32 to memory64 0100 00XB 1000 0001 : mod 001 r/m : imm32

immediate8 to memory64 0100 00XB 1000 0011 : mod 001 r/m : imm8

OUT – Output to Port

fixed port 1110 011w : port number

variable port 1110 111w

OUTS – Output to DX Port

output to DX Port 0110 111w

POP – Pop a Value from the Stack

wordregister 0101 0101 : 0100 000B : 1000 1111 : 11 000 reg16

qwordregister 0100 W00BS : 1000 1111 : 11 000 reg64

wordregister (alternate encoding) 0101 0101 : 0100 000B : 0101 1 reg16

qwordregister (alternate encoding) 0100 W00B : 0101 1 reg64

memory64 0100 W0XBS : 1000 1111 : mod 000 r/m

memory16 0101 0101 : 0100 00XB 1000 1111 : mod 000 r/m

POP – Pop a Segment Register from the Stack
(Note: CS cannot be sreg2 in this usage.)

segment register FS, GS 0000 1111: 10 sreg3 001

POPF/POPFQ – Pop Stack into FLAGS/RFLAGS Register

pop stack to FLAGS register 0101 0101 : 1001 1101

pop Stack to RFLAGS register 0100 1000 1001 1101

PUSH – Push Operand onto the Stack

wordregister 0101 0101 : 0100 000B : 1111 1111 : 11 110 reg16

qwordregister 0100 W00BS : 1111 1111 : 11 110 reg64

wordregister (alternate encoding) 0101 0101 : 0100 000B : 0101 0 reg16

qwordregister (alternate encoding) 0100 W00BS : 0101 0 reg64

memory16 0101 0101 : 0100 000B : 1111 1111 : mod 110 r/m

memory64 0100 W00BS : 1111 1111 : mod 110 r/m

immediate8 0110 1010 : imm8

immediate16 0101 0101 : 0110 1000 : imm16

immediate64 0110 1000 : imm64

PUSH – Push Segment Register onto the Stack

segment register FS,GS 0000 1111: 10 sreg3 000

PUSHF/PUSHFD – Push Flags Register onto the Stack 1001 1100

RCL – Rotate thru Carry Left

register by 1 0100 000B : 1101 000w : 11 010 reg

qwordregister by 1 0100 100B 1101 0001 : 11 010 qwordreg

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding

Vol. 2D B-29

INSTRUCTION FORMATS AND ENCODINGS

memory by 1 0100 00XB : 1101 000w : mod 010 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 010 r/m

register by CL 0100 000B : 1101 001w : 11 010 reg

qwordregister by CL 0100 100B 1101 0011 : 11 010 qwordreg

memory by CL 0100 00XB : 1101 001w : mod 010 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 010 r/m

register by immediate count 0100 000B : 1100 000w : 11 010 reg : imm

qwordregister by immediate count 0100 100B 1100 0001 : 11 010 qwordreg : imm8

memory by immediate count 0100 00XB : 1100 000w : mod 010 r/m : imm

memory64 by immediate count 0100 10XB 1100 0001 : mod 010 r/m : imm8

RCR – Rotate thru Carry Right

register by 1 0100 000B : 1101 000w : 11 011 reg

qwordregister by 1 0100 100B 1101 0001 : 11 011 qwordreg

memory by 1 0100 00XB : 1101 000w : mod 011 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 011 r/m

register by CL 0100 000B : 1101 001w : 11 011 reg

qwordregister by CL 0100 000B 1101 0010 : 11 011 qwordreg

memory by CL 0100 00XB : 1101 001w : mod 011 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 011 r/m

register by immediate count 0100 000B : 1100 000w : 11 011 reg : imm8

qwordregister by immediate count 0100 100B 1100 0001 : 11 011 qwordreg : imm8

memory by immediate count 0100 00XB : 1100 000w : mod 011 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 011 r/m : imm8

RDMSR – Read from Model-Specific Register

load ECX-specified register into EDX:EAX 0000 1111 : 0011 0010

RDPMC – Read Performance Monitoring Counters

load ECX-specified performance counter into EDX:EAX 0000 1111 : 0011 0011

RDTSC – Read Time-Stamp Counter

read time-stamp counter into EDX:EAX 0000 1111 : 0011 0001

RDTSCP – Read Time-Stamp Counter and Processor ID 0000 1111 : 0000 0001: 1111 1001

REP INS – Input String

REP LODS – Load String

REP MOVS – Move String

REP OUTS – Output String

REP STOS – Store String

REPE CMPS – Compare String

REPE SCAS – Scan String

REPNE CMPS – Compare String

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding

B-30 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

REPNE SCAS – Scan String

RET – Return from Procedure (to same segment)

no argument 1100 0011

adding immediate to SP 1100 0010 : 16-bit displacement

RET – Return from Procedure (to other segment)

intersegment 1100 1011

adding immediate to SP 1100 1010 : 16-bit displacement

ROL – Rotate Left

register by 1 0100 000B 1101 000w : 11 000 reg

byteregister by 1 0100 000B 1101 0000 : 11 000 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 000 qwordreg

memory by 1 0100 00XB 1101 000w : mod 000 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 000 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 000 r/m

register by CL 0100 000B 1101 001w : 11 000 reg

byteregister by CL 0100 000B 1101 0010 : 11 000 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 000 qwordreg

memory by CL 0100 00XB 1101 001w : mod 000 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 000 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 000 r/m

register by immediate count 1100 000w : 11 000 reg : imm8

byteregister by immediate count 0100 000B 1100 0000 : 11 000 bytereg : imm8

qwordregister by immediate count 0100 100B 1100 0001 : 11 000 bytereg : imm8

memory by immediate count 1100 000w : mod 000 r/m : imm8

memory8 by immediate count 0100 00XB 1100 0000 : mod 000 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 000 r/m : imm8

ROR – Rotate Right

register by 1 0100 000B 1101 000w : 11 001 reg

byteregister by 1 0100 000B 1101 0000 : 11 001 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 001 qwordreg

memory by 1 0100 00XB 1101 000w : mod 001 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 001 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 001 r/m

register by CL 0100 000B 1101 001w : 11 001 reg

byteregister by CL 0100 000B 1101 0010 : 11 001 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 001 qwordreg

memory by CL 0100 00XB 1101 001w : mod 001 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 001 r/m

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding

Vol. 2D B-31

INSTRUCTION FORMATS AND ENCODINGS

memory64 by CL 0100 10XB 1101 0011 : mod 001 r/m

register by immediate count 0100 000B 1100 000w : 11 001 reg : imm8

byteregister by immediate count 0100 000B 1100 0000 : 11 001 reg : imm8

qwordregister by immediate count 0100 100B 1100 0001 : 11 001 qwordreg : imm8

memory by immediate count 0100 00XB 1100 000w : mod 001 r/m : imm8

memory8 by immediate count 0100 00XB 1100 0000 : mod 001 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 001 r/m : imm8

RSM – Resume from System Management Mode 0000 1111 : 1010 1010

SAL – Shift Arithmetic Left same instruction as SHL

SAR – Shift Arithmetic Right

register by 1 0100 000B 1101 000w : 11 111 reg

byteregister by 1 0100 000B 1101 0000 : 11 111 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 111 qwordreg

memory by 1 0100 00XB 1101 000w : mod 111 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 111 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 111 r/m

register by CL 0100 000B 1101 001w : 11 111 reg

byteregister by CL 0100 000B 1101 0010 : 11 111 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 111 qwordreg

memory by CL 0100 00XB 1101 001w : mod 111 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 111 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 111 r/m

register by immediate count 0100 000B 1100 000w : 11 111 reg : imm8

byteregister by immediate count 0100 000B 1100 0000 : 11 111 bytereg : imm8

qwordregister by immediate count 0100 100B 1100 0001 : 11 111 qwordreg : imm8

memory by immediate count 0100 00XB 1100 000w : mod 111 r/m : imm8

memory8 by immediate count 0100 00XB 1100 0000 : mod 111 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 111 r/m : imm8

SBB – Integer Subtraction with Borrow

register1 to register2 0100 0R0B 0001 100w : 11 reg1 reg2

byteregister1 to byteregister2 0100 0R0B 0001 1000 : 11 bytereg1 bytereg2

quadregister1 to quadregister2 0100 1R0B 0001 1001 : 11 quadreg1 quadreg2

register2 to register1 0100 0R0B 0001 101w : 11 reg1 reg2

byteregister2 to byteregister1 0100 0R0B 0001 1010 : 11 reg1 bytereg2

byteregister2 to byteregister1 0100 1R0B 0001 1011 : 11 reg1 bytereg2

memory to register 0100 0RXB 0001 101w : mod reg r/m

memory8 to byteregister 0100 0RXB 0001 1010 : mod bytereg r/m

memory64 to byteregister 0100 1RXB 0001 1011 : mod quadreg r/m

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding

B-32 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

register to memory 0100 0RXB 0001 100w : mod reg r/m

byteregister to memory8 0100 0RXB 0001 1000 : mod reg r/m

quadregister to memory64 0100 1RXB 0001 1001 : mod reg r/m

immediate to register 0100 000B 1000 00sw : 11 011 reg : imm

immediate8 to byteregister 0100 000B 1000 0000 : 11 011 bytereg : imm8

immediate32 to qwordregister 0100 100B 1000 0001 : 11 011 qwordreg : imm32

immediate8 to qwordregister 0100 100B 1000 0011 : 11 011 qwordreg : imm8

immediate to AL, AX, or EAX 0100 000B 0001 110w : imm

immediate32 to RAL 0100 1000 0001 1101 : imm32

immediate to memory 0100 00XB 1000 00sw : mod 011 r/m : imm

immediate8 to memory8 0100 00XB 1000 0000 : mod 011 r/m : imm8

immediate32 to memory64 0100 10XB 1000 0001 : mod 011 r/m : imm32

immediate8 to memory64 0100 10XB 1000 0011 : mod 011 r/m : imm8

SCAS/SCASB/SCASW/SCASD – Scan String

scan string 1010 111w

scan string (compare AL with byte at RDI) 0100 1000 1010 1110

scan string (compare RAX with qword at RDI) 0100 1000 1010 1111

SETcc – Byte Set on Condition

register 0100 000B 0000 1111 : 1001 tttn : 11 000 reg

register 0100 0000 0000 1111 : 1001 tttn : 11 000 reg

memory 0100 00XB 0000 1111 : 1001 tttn : mod 000 r/m

memory 0100 0000 0000 1111 : 1001 tttn : mod 000 r/m

SGDT – Store Global Descriptor Table Register 0000 1111 : 0000 0001 : modA 000 r/m

SHL – Shift Left

register by 1 0100 000B 1101 000w : 11 100 reg

byteregister by 1 0100 000B 1101 0000 : 11 100 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 100 qwordreg

memory by 1 0100 00XB 1101 000w : mod 100 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 100 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 100 r/m

register by CL 0100 000B 1101 001w : 11 100 reg

byteregister by CL 0100 000B 1101 0010 : 11 100 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 100 qwordreg

memory by CL 0100 00XB 1101 001w : mod 100 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 100 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 100 r/m

register by immediate count 0100 000B 1100 000w : 11 100 reg : imm8

byteregister by immediate count 0100 000B 1100 0000 : 11 100 bytereg : imm8

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding

Vol. 2D B-33

INSTRUCTION FORMATS AND ENCODINGS

quadregister by immediate count 0100 100B 1100 0001 : 11 100 quadreg : imm8

memory by immediate count 0100 00XB 1100 000w : mod 100 r/m : imm8

memory8 by immediate count 0100 00XB 1100 0000 : mod 100 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 100 r/m : imm8

SHLD – Double Precision Shift Left

register by immediate count 0100 0R0B 0000 1111 : 1010 0100 : 11 reg2 reg1 : imm8

qwordregister by immediate8 0100 1R0B 0000 1111 : 1010 0100 : 11 qworddreg2
qwordreg1 : imm8

memory by immediate count 0100 0RXB 0000 1111 : 1010 0100 : mod reg r/m : imm8

memory64 by immediate8 0100 1RXB 0000 1111 : 1010 0100 : mod qwordreg r/m :
imm8

register by CL 0100 0R0B 0000 1111 : 1010 0101 : 11 reg2 reg1

quadregister by CL 0100 1R0B 0000 1111 : 1010 0101 : 11 quadreg2 quadreg1

memory by CL 0100 00XB 0000 1111 : 1010 0101 : mod reg r/m

memory64 by CL 0100 1RXB 0000 1111 : 1010 0101 : mod quadreg r/m

SHR – Shift Right

register by 1 0100 000B 1101 000w : 11 101 reg

byteregister by 1 0100 000B 1101 0000 : 11 101 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 101 qwordreg

memory by 1 0100 00XB 1101 000w : mod 101 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 101 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 101 r/m

register by CL 0100 000B 1101 001w : 11 101 reg

byteregister by CL 0100 000B 1101 0010 : 11 101 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 101 qwordreg

memory by CL 0100 00XB 1101 001w : mod 101 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 101 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 101 r/m

register by immediate count 0100 000B 1100 000w : 11 101 reg : imm8

byteregister by immediate count 0100 000B 1100 0000 : 11 101 reg : imm8

qwordregister by immediate count 0100 100B 1100 0001 : 11 101 reg : imm8

memory by immediate count 0100 00XB 1100 000w : mod 101 r/m : imm8

memory8 by immediate count 0100 00XB 1100 0000 : mod 101 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 101 r/m : imm8

SHRD – Double Precision Shift Right

register by immediate count 0100 0R0B 0000 1111 : 1010 1100 : 11 reg2 reg1 : imm8

qwordregister by immediate8 0100 1R0B 0000 1111 : 1010 1100 : 11 qwordreg2
qwordreg1 : imm8

memory by immediate count 0100 00XB 0000 1111 : 1010 1100 : mod reg r/m : imm8

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding

B-34 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

memory64 by immediate8 0100 1RXB 0000 1111 : 1010 1100 : mod qwordreg r/m :
imm8

register by CL 0100 000B 0000 1111 : 1010 1101 : 11 reg2 reg1

qwordregister by CL 0100 1R0B 0000 1111 : 1010 1101 : 11 qwordreg2
qwordreg1

memory by CL 0000 1111 : 1010 1101 : mod reg r/m

memory64 by CL 0100 1RXB 0000 1111 : 1010 1101 : mod qwordreg r/m

SIDT – Store Interrupt Descriptor Table Register 0000 1111 : 0000 0001 : modA 001 r/m

SLDT – Store Local Descriptor Table Register

to register 0100 000B 0000 1111 : 0000 0000 : 11 000 reg

to memory 0100 00XB 0000 1111 : 0000 0000 : mod 000 r/m

SMSW – Store Machine Status Word

to register 0100 000B 0000 1111 : 0000 0001 : 11 100 reg

to memory 0100 00XB 0000 1111 : 0000 0001 : mod 100 r/m

STC – Set Carry Flag 1111 1001

STD – Set Direction Flag 1111 1101

STI – Set Interrupt Flag 1111 1011

STOS/STOSB/STOSW/STOSD/STOSQ – Store String Data

store string data 1010 101w

store string data (RAX at address RDI) 0100 1000 1010 1011

STR – Store Task Register

to register 0100 000B 0000 1111 : 0000 0000 : 11 001 reg

to memory 0100 00XB 0000 1111 : 0000 0000 : mod 001 r/m

SUB – Integer Subtraction

register1 from register2 0100 0R0B 0010 100w : 11 reg1 reg2

byteregister1 from byteregister2 0100 0R0B 0010 1000 : 11 bytereg1 bytereg2

qwordregister1 from qwordregister2 0100 1R0B 0010 1000 : 11 qwordreg1 qwordreg2

register2 from register1 0100 0R0B 0010 101w : 11 reg1 reg2

byteregister2 from byteregister1 0100 0R0B 0010 1010 : 11 bytereg1 bytereg2

qwordregister2 from qwordregister1 0100 1R0B 0010 1011 : 11 qwordreg1 qwordreg2

memory from register 0100 00XB 0010 101w : mod reg r/m

memory8 from byteregister 0100 0RXB 0010 1010 : mod bytereg r/m

memory64 from qwordregister 0100 1RXB 0010 1011 : mod qwordreg r/m

register from memory 0100 0RXB 0010 100w : mod reg r/m

byteregister from memory8 0100 0RXB 0010 1000 : mod bytereg r/m

qwordregister from memory8 0100 1RXB 0010 1000 : mod qwordreg r/m

immediate from register 0100 000B 1000 00sw : 11 101 reg : imm

immediate8 from byteregister 0100 000B 1000 0000 : 11 101 bytereg : imm8

immediate32 from qwordregister 0100 100B 1000 0001 : 11 101 qwordreg : imm32

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding

Vol. 2D B-35

INSTRUCTION FORMATS AND ENCODINGS

immediate8 from qwordregister 0100 100B 1000 0011 : 11 101 qwordreg : imm8

immediate from AL, AX, or EAX 0100 000B 0010 110w : imm

immediate32 from RAX 0100 1000 0010 1101 : imm32

immediate from memory 0100 00XB 1000 00sw : mod 101 r/m : imm

immediate8 from memory8 0100 00XB 1000 0000 : mod 101 r/m : imm8

immediate32 from memory64 0100 10XB 1000 0001 : mod 101 r/m : imm32

immediate8 from memory64 0100 10XB 1000 0011 : mod 101 r/m : imm8

SWAPGS – Swap GS Base Register

Exchanges the current GS base register value for value in MSR
C0000102H

0000 1111 0000 0001 1111 1000

SYSCALL – Fast System Call

fast call to privilege level 0 system procedures 0000 1111 0000 0101

SYSRET – Return From Fast System Call

return from fast system call 0000 1111 0000 0111

TEST – Logical Compare

register1 and register2 0100 0R0B 1000 010w : 11 reg1 reg2

byteregister1 and byteregister2 0100 0R0B 1000 0100 : 11 bytereg1 bytereg2

qwordregister1 and qwordregister2 0100 1R0B 1000 0101 : 11 qwordreg1 qwordreg2

memory and register 0100 0R0B 1000 010w : mod reg r/m

memory8 and byteregister 0100 0RXB 1000 0100 : mod bytereg r/m

memory64 and qwordregister 0100 1RXB 1000 0101 : mod qwordreg r/m

immediate and register 0100 000B 1111 011w : 11 000 reg : imm

immediate8 and byteregister 0100 000B 1111 0110 : 11 000 bytereg : imm8

immediate32 and qwordregister 0100 100B 1111 0111 : 11 000 bytereg : imm8

immediate and AL, AX, or EAX 0100 000B 1010 100w : imm

immediate32 and RAX 0100 1000 1010 1001 : imm32

immediate and memory 0100 00XB 1111 011w : mod 000 r/m : imm

immediate8 and memory8 0100 1000 1111 0110 : mod 000 r/m : imm8

immediate32 and memory64 0100 1000 1111 0111 : mod 000 r/m : imm32

UD2 – Undefined instruction 0000 FFFF : 0000 1011

VERR – Verify a Segment for Reading

register 0100 000B 0000 1111 : 0000 0000 : 11 100 reg

memory 0100 00XB 0000 1111 : 0000 0000 : mod 100 r/m

VERW – Verify a Segment for Writing

register 0100 000B 0000 1111 : 0000 0000 : 11 101 reg

memory 0100 00XB 0000 1111 : 0000 0000 : mod 101 r/m

WAIT – Wait 1001 1011

WBINVD – Writeback and Invalidate Data Cache 0000 1111 : 0000 1001

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding

B-36 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

WRMSR – Write to Model-Specific Register

write EDX:EAX to ECX specified MSR 0000 1111 : 0011 0000

write RDX[31:0]:RAX[31:0] to RCX specified MSR 0100 1000 0000 1111 : 0011 0000

XADD – Exchange and Add

register1, register2 0100 0R0B 0000 1111 : 1100 000w : 11 reg2 reg1

byteregister1, byteregister2 0100 0R0B 0000 1111 : 1100 0000 : 11 bytereg2 bytereg1

qwordregister1, qwordregister2 0100 0R0B 0000 1111 : 1100 0001 : 11 qwordreg2
qwordreg1

memory, register 0100 0RXB 0000 1111 : 1100 000w : mod reg r/m

memory8, bytereg 0100 1RXB 0000 1111 : 1100 0000 : mod bytereg r/m

memory64, qwordreg 0100 1RXB 0000 1111 : 1100 0001 : mod qwordreg r/m

XCHG – Exchange Register/Memory with Register

register1 with register2 1000 011w : 11 reg1 reg2

AX or EAX with register 1001 0 reg

memory with register 1000 011w : mod reg r/m

XLAT/XLATB – Table Look-up Translation

AL to byte DS:[(E)BX + unsigned AL] 1101 0111

AL to byte DS:[RBX + unsigned AL] 0100 1000 1101 0111

XOR – Logical Exclusive OR

register1 to register2 0100 0RXB 0011 000w : 11 reg1 reg2

byteregister1 to byteregister2 0100 0R0B 0011 0000 : 11 bytereg1 bytereg2

qwordregister1 to qwordregister2 0100 1R0B 0011 0001 : 11 qwordreg1 qwordreg2

register2 to register1 0100 0R0B 0011 001w : 11 reg1 reg2

byteregister2 to byteregister1 0100 0R0B 0011 0010 : 11 bytereg1 bytereg2

qwordregister2 to qwordregister1 0100 1R0B 0011 0011 : 11 qwordreg1 qwordreg2

memory to register 0100 0RXB 0011 001w : mod reg r/m

memory8 to byteregister 0100 0RXB 0011 0010 : mod bytereg r/m

memory64 to qwordregister 0100 1RXB 0011 0011 : mod qwordreg r/m

register to memory 0100 0RXB 0011 000w : mod reg r/m

byteregister to memory8 0100 0RXB 0011 0000 : mod bytereg r/m

qwordregister to memory8 0100 1RXB 0011 0001 : mod qwordreg r/m

immediate to register 0100 000B 1000 00sw : 11 110 reg : imm

immediate8 to byteregister 0100 000B 1000 0000 : 11 110 bytereg : imm8

immediate32 to qwordregister 0100 100B 1000 0001 : 11 110 qwordreg : imm32

immediate8 to qwordregister 0100 100B 1000 0011 : 11 110 qwordreg : imm8

immediate to AL, AX, or EAX 0100 000B 0011 010w : imm

immediate to RAX 0100 1000 0011 0101 : immediate data

immediate to memory 0100 00XB 1000 00sw : mod 110 r/m : imm

immediate8 to memory8 0100 00XB 1000 0000 : mod 110 r/m : imm8

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding

Vol. 2D B-37

INSTRUCTION FORMATS AND ENCODINGS

B.3 PENTIUM® PROCESSOR FAMILY INSTRUCTION FORMATS AND ENCODINGS
The following table shows formats and encodings introduced by the Pentium processor family.

B.4 64-BIT MODE INSTRUCTION ENCODINGS FOR SIMD INSTRUCTION
EXTENSIONS

Non-64-bit mode instruction encodings for MMX Technology, SSE, SSE2, and SSE3 are covered by applying these
rules to Table B-19 through Table B-31. Table B-34 lists special encodings (instructions that do not follow the rules
below).

1. The REX instruction has no effect:

• On immediates.

• If both operands are MMX registers.

• On MMX registers and XMM registers.

• If an MMX register is encoded in the reg field of the ModR/M byte.

immediate32 to memory64 0100 10XB 1000 0001 : mod 110 r/m : imm32

immediate8 to memory64 0100 10XB 1000 0011 : mod 110 r/m : imm8

Prefix Bytes

address size 0110 0111

LOCK 1111 0000

operand size 0110 0110

CS segment override 0010 1110

DS segment override 0011 1110

ES segment override 0010 0110

FS segment override 0110 0100

GS segment override 0110 0101

SS segment override 0011 0110

Table B-16. Pentium® Processor Family Instruction Formats and Encodings, Non-64-Bit Modes

Instruction and Format Encoding

CMPXCHG8B – Compare and Exchange 8 Bytes

EDX:EAX with memory64 0000 1111 : 1100 0111 : mod 001 r/m

Table B-17. Pentium® Processor Family Instruction Formats and Encodings, 64-Bit Mode

Instruction and Format Encoding

CMPXCHG8B/CMPXCHG16B – Compare and Exchange Bytes

EDX:EAX with memory64 0000 1111 : 1100 0111 : mod 001 r/m

RDX:RAX with memory128 0100 10XB 0000 1111 : 1100 0111 : mod 001 r/m

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding

B-38 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

2. If a memory operand is encoded in the r/m field of the ModR/M byte, REX.X and REX.B may be used for
encoding the memory operand.

3. If a general-purpose register is encoded in the r/m field of the ModR/M byte, REX.B may be used for register
encoding and REX.W may be used to encode the 64-bit operand size.

4. If an XMM register operand is encoded in the reg field of the ModR/M byte, REX.R may be used for register
encoding. If an XMM register operand is encoded in the r/m field of the ModR/M byte, REX.B may be used for
register encoding.

B.5 MMX INSTRUCTION FORMATS AND ENCODINGS
MMX instructions, except the EMMS instruction, use a format similar to the 2-byte Intel Architecture integer format.
Details of subfield encodings within these formats are presented below.

B.5.1 Granularity Field (gg)
The granularity field (gg) indicates the size of the packed operands that the instruction is operating on. When this
field is used, it is located in bits 1 and 0 of the second opcode byte. Table B-18 shows the encoding of the gg field.

B.5.2 MMX Technology and General-Purpose Register Fields (mmxreg and reg)
When MMX technology registers (mmxreg) are used as operands, they are encoded in the ModR/M byte in the reg
field (bits 5, 4, and 3) and/or the R/M field (bits 2, 1, and 0).

If an MMX instruction operates on a general-purpose register (reg), the register is encoded in the R/M field of the
ModR/M byte.

B.5.3 MMX Instruction Formats and Encodings Table
Table B-19 shows the formats and encodings of the integer instructions.

Table B-18. Encoding of Granularity of Data Field (gg)

gg Granularity of Data

00 Packed Bytes

01 Packed Words

10 Packed Doublewords

11 Quadword

Table B-19. MMX Instruction Formats and Encodings

Instruction and Format Encoding

EMMS – Empty MMX technology state 0000 1111:01110111

MOVD – Move doubleword

reg to mmxreg 0000 1111:0110 1110: 11 mmxreg reg

reg from mmxreg 0000 1111:0111 1110: 11 mmxreg reg

mem to mmxreg 0000 1111:0110 1110: mod mmxreg r/m

mem from mmxreg 0000 1111:0111 1110: mod mmxreg r/m

MOVQ – Move quadword

mmxreg2 to mmxreg1 0000 1111:0110 1111: 11 mmxreg1 mmxreg2

mmxreg2 from mmxreg1 0000 1111:0111 1111: 11 mmxreg1 mmxreg2

Vol. 2D B-39

INSTRUCTION FORMATS AND ENCODINGS

mem to mmxreg 0000 1111:0110 1111: mod mmxreg r/m

mem from mmxreg 0000 1111:0111 1111: mod mmxreg r/m

PACKSSDW1 – Pack dword to word data (signed with saturation)

mmxreg2 to mmxreg1 0000 1111:0110 1011: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 1011: mod mmxreg r/m

PACKSSWB1 – Pack word to byte data (signed with saturation)

mmxreg2 to mmxreg1 0000 1111:0110 0011: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 0011: mod mmxreg r/m

PACKUSWB1 – Pack word to byte data (unsigned with saturation)

mmxreg2 to mmxreg1 0000 1111:0110 0111: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 0111: mod mmxreg r/m

PADD – Add with wrap-around

mmxreg2 to mmxreg1 0000 1111: 1111 11gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111: 1111 11gg: mod mmxreg r/m

PADDS – Add signed with saturation

mmxreg2 to mmxreg1 0000 1111: 1110 11gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111: 1110 11gg: mod mmxreg r/m

PADDUS – Add unsigned with saturation

mmxreg2 to mmxreg1 0000 1111: 1101 11gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111: 1101 11gg: mod mmxreg r/m

PAND – Bitwise And

mmxreg2 to mmxreg1 0000 1111:1101 1011: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1101 1011: mod mmxreg r/m

PANDN – Bitwise AndNot

mmxreg2 to mmxreg1 0000 1111:1101 1111: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1101 1111: mod mmxreg r/m

PCMPEQ – Packed compare for equality

 mmxreg1 with mmxreg2 0000 1111:0111 01gg: 11 mmxreg1 mmxreg2

 mmxreg with memory 0000 1111:0111 01gg: mod mmxreg r/m

PCMPGT – Packed compare greater (signed)

mmxreg1 with mmxreg2 0000 1111:0110 01gg: 11 mmxreg1 mmxreg2

mmxreg with memory 0000 1111:0110 01gg: mod mmxreg r/m

PMADDWD – Packed multiply add

mmxreg2 to mmxreg1 0000 1111:1111 0101: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1111 0101: mod mmxreg r/m

PMULHUW – Packed multiplication, store high word (unsigned)

 mmxreg2 to mmxreg1 0000 1111: 1110 0100: 11 mmxreg1 mmxreg2

 memory to mmxreg 0000 1111: 1110 0100: mod mmxreg r/m

Table B-19. MMX Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

B-40 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

PMULHW – Packed multiplication, store high word

mmxreg2 to mmxreg1 0000 1111:1110 0101: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1110 0101: mod mmxreg r/m

PMULLW – Packed multiplication, store low word

mmxreg2 to mmxreg1 0000 1111:1101 0101: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1101 0101: mod mmxreg r/m

POR – Bitwise Or

mmxreg2 to mmxreg1 0000 1111:1110 1011: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1110 1011: mod mmxreg r/m

PSLL2 – Packed shift left logical

mmxreg1 by mmxreg2 0000 1111:1111 00gg: 11 mmxreg1 mmxreg2

mmxreg by memory 0000 1111:1111 00gg: mod mmxreg r/m

mmxreg by immediate 0000 1111:0111 00gg: 11 110 mmxreg: imm8 data

PSRA2 – Packed shift right arithmetic

mmxreg1 by mmxreg2 0000 1111:1110 00gg: 11 mmxreg1 mmxreg2

mmxreg by memory 0000 1111:1110 00gg: mod mmxreg r/m

mmxreg by immediate 0000 1111:0111 00gg: 11 100 mmxreg: imm8 data

PSRL2 – Packed shift right logical

mmxreg1 by mmxreg2 0000 1111:1101 00gg: 11 mmxreg1 mmxreg2

 mmxreg by memory 0000 1111:1101 00gg: mod mmxreg r/m

mmxreg by immediate 0000 1111:0111 00gg: 11 010 mmxreg: imm8 data

PSUB – Subtract with wrap-around

mmxreg2 from mmxreg1 0000 1111:1111 10gg: 11 mmxreg1 mmxreg2

memory from mmxreg 0000 1111:1111 10gg: mod mmxreg r/m

PSUBS – Subtract signed with saturation

mmxreg2 from mmxreg1 0000 1111:1110 10gg: 11 mmxreg1 mmxreg2

memory from mmxreg 0000 1111:1110 10gg: mod mmxreg r/m

PSUBUS – Subtract unsigned with saturation

mmxreg2 from mmxreg1 0000 1111:1101 10gg: 11 mmxreg1 mmxreg2

memory from mmxreg 0000 1111:1101 10gg: mod mmxreg r/m

PUNPCKH – Unpack high data to next larger type

mmxreg2 to mmxreg1 0000 1111:0110 10gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 10gg: mod mmxreg r/m

PUNPCKL – Unpack low data to next larger type

mmxreg2 to mmxreg1 0000 1111:0110 00gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 00gg: mod mmxreg r/m

Table B-19. MMX Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

Vol. 2D B-41

INSTRUCTION FORMATS AND ENCODINGS

B.6 PROCESSOR EXTENDED STATE INSTRUCTION FORMATS AND ENCODINGS
Table B-20 shows the formats and encodings for several instructions that relate to processor extended state
management.

B.7 P6 FAMILY INSTRUCTION FORMATS AND ENCODINGS
Table B-20 shows the formats and encodings for several instructions that were introduced into the IA-32 architec-
ture in the P6 family processors.

PXOR – Bitwise Xor

mmxreg2 to mmxreg1 0000 1111:1110 1111: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1110 1111: mod mmxreg r/m

NOTES:
1. The pack instructions perform saturation from signed packed data of one type to signed or unsigned data of the next smaller type.
2. The format of the shift instructions has one additional format to support shifting by immediate shift-counts. The shift operations

are not supported equally for all data types.

Table B-20. Formats and Encodings of XSAVE/XRSTOR/XGETBV/XSETBV Instructions

Instruction and Format Encoding

XGETBV – Get Value of Extended Control Register 0000 1111:0000 0001: 1101 0000

XRSTOR – Restore Processor Extended States1 0000 1111:1010 1110: modA 101 r/m

XSAVE – Save Processor Extended States1 0000 1111:1010 1110: modA 100 r/m

XSETBV – Set Extended Control Register 0000 1111:0000 0001: 1101 0001

NOTES:
1. For XSAVE and XRSTOR, “mod = 11” is reserved.

Table B-21. Formats and Encodings of P6 Family Instructions

Instruction and Format Encoding

CMOVcc – Conditional Move

register2 to register1 0000 1111: 0100 tttn : 11 reg1 reg2

memory to register 0000 1111 : 0100 tttn : mod reg r/m

FCMOVcc – Conditional Move on EFLAG Register Condition Codes

move if below (B) 11011 010 : 11 000 ST(i)

move if equal (E) 11011 010 : 11 001 ST(i)

move if below or equal (BE) 11011 010 : 11 010 ST(i)

move if unordered (U) 11011 010 : 11 011 ST(i)

move if not below (NB) 11011 011 : 11 000 ST(i)

move if not equal (NE) 11011 011 : 11 001 ST(i)

move if not below or equal (NBE) 11011 011 : 11 010 ST(i)

Table B-19. MMX Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

B-42 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

B.8 SSE INSTRUCTION FORMATS AND ENCODINGS
The SSE instructions use the ModR/M format and are preceded by the 0FH prefix byte. In general, operations are
not duplicated to provide two directions (that is, separate load and store variants).

The following three tables (Tables B-22, B-23, and B-24) show the formats and encodings for the SSE SIMD
floating-point, SIMD integer, and cacheability and memory ordering instructions, respectively. Some SSE instruc-
tions require a mandatory prefix (66H, F2H, F3H) as part of the two-byte opcode. Mandatory prefixes are included
in the tables.

move if not unordered (NU) 11011 011 : 11 011 ST(i)

FCOMI – Compare Real and Set EFLAGS 11011 011 : 11 110 ST(i)

FXRSTOR – Restore x87 FPU, MMX, SSE, and SSE2 State1 0000 1111:1010 1110: modA 001 r/m

FXSAVE – Save x87 FPU, MMX, SSE, and SSE2 State1 0000 1111:1010 1110: modA 000 r/m

SYSENTER – Fast System Call 0000 1111:0011 0100

SYSEXIT – Fast Return from Fast System Call 0000 1111:0011 0101

NOTES:
1. For FXSAVE and FXRSTOR, “mod = 11” is reserved.

Table B-22. Formats and Encodings of SSE Floating-Point Instructions

Instruction and Format Encoding

ADDPS—Add Packed Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0101 1000:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1000: mod xmmreg r/m

ADDSS—Add Scalar Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 1111 0011:0000 1111:01011000:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0011:0000 1111:01011000: mod xmmreg r/m

ANDNPS—Bitwise Logical AND NOT of Packed Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0101 0101:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 0101: mod xmmreg r/m

ANDPS—Bitwise Logical AND of Packed Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0101 0100:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 0100: mod xmmreg r/m

CMPPS—Compare Packed Single Precision Floating-Point Values

 xmmreg2 to xmmreg1, imm8 0000 1111:1100 0010:11 xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0000 1111:1100 0010: mod xmmreg r/m: imm8

CMPSS—Compare Scalar Single Precision Floating-Point Values

 xmmreg2 to xmmreg1, imm8 1111 0011:0000 1111:1100 0010:11 xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 1111 0011:0000 1111:1100 0010: mod xmmreg r/m: imm8

COMISS—Compare Scalar Ordered Single Precision Floating-Point Values and Set EFLAGS

 xmmreg2 to xmmreg1 0000 1111:0010 1111:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0010 1111: mod xmmreg r/m

Table B-21. Formats and Encodings of P6 Family Instructions (Contd.)

Instruction and Format Encoding

Vol. 2D B-43

INSTRUCTION FORMATS AND ENCODINGS

CVTPI2PS—Convert Packed Doubleword Integers to Packed Single Precision Floating-Point Values

 mmreg to xmmreg 0000 1111:0010 1010:11 xmmreg1 mmreg1

 mem to xmmreg 0000 1111:0010 1010: mod xmmreg r/m

CVTPS2PI—Convert Packed Single Precision Floating-Point Values to Packed Doubleword Integers

 xmmreg to mmreg 0000 1111:0010 1101:11 mmreg1 xmmreg1

 mem to mmreg 0000 1111:0010 1101: mod mmreg r/m

CVTSI2SS—Convert Signed Integer to Scalar Single Precision Floating-Point Value

 r32 to xmmreg1 1111 0011:0000 1111:00101010:11 xmmreg1 r32

 mem to xmmreg 1111 0011:0000 1111:00101010: mod xmmreg r/m

CVTSS2SI—Convert Scalar Single Precision Floating-Point Value to Signed Integer

 xmmreg to r32 1111 0011:0000 1111:0010 1101:11 r32 xmmreg

 mem to r32 1111 0011:0000 1111:0010 1101: mod r32 r/m

CVTTPS2PI—Convert with Truncation Packed Single Precision Floating-Point Values to Packed Doubleword Integers

 xmmreg to mmreg 0000 1111:0010 1100:11 mmreg1 xmmreg1

 mem to mmreg 0000 1111:0010 1100: mod mmreg r/m

CVTTSS2SI—Convert with Truncation Scalar Single Precision Floating-Point Value to Signed Integer

 xmmreg to r32 1111 0011:0000 1111:0010 1100:11 r32 xmmreg1

 mem to r32 1111 0011:0000 1111:0010 1100: mod r32 r/m

DIVPS—Divide Packed Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0101 1110:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1110: mod xmmreg r/m

DIVSS—Divide Scalar Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1110:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 1110: mod xmmreg r/m

LDMXCSR—Load MXCSR Register State

 m32 to MXCSR 0000 1111:1010 1110:modA 010 mem

MAXPS—Return Maximum Packed Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0101 1111:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1111: mod xmmreg r/m

MAXSS—Return Maximum Scalar Double Precision Floating-Point Value

 xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1111:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 1111: mod xmmreg r/m

MINPS—Return Minimum Packed Double Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0101 1101:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1101: mod xmmreg r/m

MINSS—Return Minimum Scalar Double Precision Floating-Point Value

 xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1101:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 1101: mod xmmreg r/m

Table B-22. Formats and Encodings of SSE Floating-Point Instructions (Contd.)

Instruction and Format Encoding

B-44 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

MOVAPS—Move Aligned Packed Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0010 1000:11 xmmreg2 xmmreg1

 mem to xmmreg1 0000 1111:0010 1000: mod xmmreg r/m

 xmmreg1 to xmmreg2 0000 1111:0010 1001:11 xmmreg1 xmmreg2

 xmmreg1 to mem 0000 1111:0010 1001: mod xmmreg r/m

MOVHLPS—Move Packed Single Precision Floating-Point Values High to Low

 xmmreg2 to xmmreg1 0000 1111:0001 0010:11 xmmreg1 xmmreg2

MOVHPS—Move High Packed Single Precision Floating-Point Values

 mem to xmmreg 0000 1111:0001 0110: mod xmmreg r/m

 xmmreg to mem 0000 1111:0001 0111: mod xmmreg r/m

MOVLHPS—Move Packed Single Precision Floating-Point Values Low to High

 xmmreg2 to xmmreg1 0000 1111:00010110:11 xmmreg1 xmmreg2

MOVLPS—Move Low Packed Single Precision Floating-Point Values

 mem to xmmreg 0000 1111:0001 0010: mod xmmreg r/m

 xmmreg to mem 0000 1111:0001 0011: mod xmmreg r/m

MOVMSKPS—Extract Packed Single Precision Floating-Point Sign Mask

 xmmreg to r32 0000 1111:0101 0000:11 r32 xmmreg

MOVSS—Move Scalar Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 1111 0011:0000 1111:0001 0000:11 xmmreg2 xmmreg1

 mem to xmmreg1 1111 0011:0000 1111:0001 0000: mod xmmreg r/m

 xmmreg1 to xmmreg2 1111 0011:0000 1111:0001 0001:11 xmmreg1 xmmreg2

 xmmreg1 to mem 1111 0011:0000 1111:0001 0001: mod xmmreg r/m

MOVUPS—Move Unaligned Packed Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0001 0000:11 xmmreg2 xmmreg1

 mem to xmmreg1 0000 1111:0001 0000: mod xmmreg r/m

 xmmreg1 to xmmreg2 0000 1111:0001 0001:11 xmmreg1 xmmreg2

 xmmreg1 to mem 0000 1111:0001 0001: mod xmmreg r/m

MULPS—Multiply Packed Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0101 1001:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1001: mod xmmreg r/m

MULSS—Multiply Scalar Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1001:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 1001: mod xmmreg r/m

ORPS—Bitwise Logical OR of Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0101 0110:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 0110: mod xmmreg r/m

RCPPS—Compute Reciprocals of Packed Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0101 0011:11 xmmreg1 xmmreg2

Table B-22. Formats and Encodings of SSE Floating-Point Instructions (Contd.)

Instruction and Format Encoding

Vol. 2D B-45

INSTRUCTION FORMATS AND ENCODINGS

 mem to xmmreg 0000 1111:0101 0011: mod xmmreg r/m

RCPSS—Compute Reciprocals of Scalar Single Precision Floating-Point Value

 xmmreg2 to xmmreg1 1111 0011:0000 1111:01010011:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0011:0000 1111:01010011: mod xmmreg r/m

RSQRTPS—Compute Reciprocals of Square Roots of Packed Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0101 0010:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 0010: mode xmmreg r/m

RSQRTSS—Compute Reciprocals of Square Roots of Scalar Single Precision Floating-Point Value

 xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 0010:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 0010: mod xmmreg r/m

SHUFPS—Shuffle Packed Single Precision Floating-Point Values

 xmmreg2 to xmmreg1, imm8 0000 1111:1100 0110:11 xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0000 1111:1100 0110: mod xmmreg r/m: imm8

SQRTPS—Compute Square Roots of Packed Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0101 0001:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 0001: mod xmmreg r/m

SQRTSS—Compute Square Root of Scalar Single Precision Floating-Point Value

 xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 0001:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 0001:mod xmmreg r/m

STMXCSR—Store MXCSR Register State

 MXCSR to mem 0000 1111:1010 1110:modA 011 mem

SUBPS—Subtract Packed Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0101 1100:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1100:mod xmmreg r/m

SUBSS—Subtract Scalar Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1100:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 1100:mod xmmreg r/m

UCOMISS—Unordered Compare Scalar Ordered Single Precision Floating-Point Values and Set EFLAGS

 xmmreg2 to xmmreg1 0000 1111:0010 1110:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0010 1110: mod xmmreg r/m

UNPCKHPS—Unpack and Interleave High Packed Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0001 0101:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0001 0101: mod xmmreg r/m

UNPCKLPS—Unpack and Interleave Low Packed Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0001 0100:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0001 0100: mod xmmreg r/m

XORPS—Bitwise Logical XOR of Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0101 0111:11 xmmreg1 xmmreg2

Table B-22. Formats and Encodings of SSE Floating-Point Instructions (Contd.)

Instruction and Format Encoding

B-46 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

 mem to xmmreg 0000 1111:0101 0111: mod xmmreg r/m

Table B-23. Formats and Encodings of SSE Integer Instructions

Instruction and Format Encoding

PAVGB/PAVGW—Average Packed Integers

 mmreg2 to mmreg1 0000 1111:1110 0000:11 mmreg1 mmreg2

0000 1111:1110 0011:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1110 0000: mod mmreg r/m

0000 1111:1110 0011: mod mmreg r/m

PEXTRW—Extract Word

 mmreg to reg32, imm8 0000 1111:1100 0101:11 r32 mmreg: imm8

PINSRW—Insert Word

 reg32 to mmreg, imm8 0000 1111:1100 0100:11 mmreg r32: imm8

 m16 to mmreg, imm8 0000 1111:1100 0100: mod mmreg r/m: imm8

PMAXSW—Maximum of Packed Signed Word Integers

 mmreg2 to mmreg1 0000 1111:1110 1110:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1110 1110: mod mmreg r/m

PMAXUB—Maximum of Packed Unsigned Byte Integers

 mmreg2 to mmreg1 0000 1111:1101 1110:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1101 1110: mod mmreg r/m

PMINSW—Minimum of Packed Signed Word Integers

 mmreg2 to mmreg1 0000 1111:1110 1010:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1110 1010: mod mmreg r/m

PMINUB—Minimum of Packed Unsigned Byte Integers

 mmreg2 to mmreg1 0000 1111:1101 1010:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1101 1010: mod mmreg r/m

PMOVMSKB—Move Byte Mask To Integer

 mmreg to reg32 0000 1111:1101 0111:11 r32 mmreg

PMULHUW—Multiply Packed Unsigned Integers and Store High Result

 mmreg2 to mmreg1 0000 1111:1110 0100:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1110 0100: mod mmreg r/m

PSADBW—Compute Sum of Absolute Differences

 mmreg2 to mmreg1 0000 1111:1111 0110:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1111 0110: mod mmreg r/m

PSHUFW—Shuffle Packed Words

 mmreg2 to mmreg1, imm8 0000 1111:0111 0000:11 mmreg1 mmreg2: imm8

 mem to mmreg, imm8 0000 1111:0111 0000: mod mmreg r/m: imm8

Table B-22. Formats and Encodings of SSE Floating-Point Instructions (Contd.)

Instruction and Format Encoding

Vol. 2D B-47

INSTRUCTION FORMATS AND ENCODINGS

B.9 SSE2 INSTRUCTION FORMATS AND ENCODINGS
The SSE2 instructions use the ModR/M format and are preceded by the 0FH prefix byte. In general, operations are
not duplicated to provide two directions (that is, separate load and store variants).

The following three tables show the formats and encodings for the SSE2 SIMD floating-point, SIMD integer, and
cacheability instructions, respectively. Some SSE2 instructions require a mandatory prefix (66H, F2H, F3H) as part
of the two-byte opcode. These prefixes are included in the tables.

B.9.1 Granularity Field (gg)
The granularity field (gg) indicates the size of the packed operands that the instruction is operating on. When this
field is used, it is located in bits 1 and 0 of the second opcode byte. Table B-25 shows the encoding of this gg field.

Table B-24. Format and Encoding of SSE Cacheability & Memory Ordering Instructions

Instruction and Format Encoding

MASKMOVQ—Store Selected Bytes of Quadword

 mmreg2 to mmreg1 0000 1111:1111 0111:11 mmreg1 mmreg2

MOVNTPS—Store Packed Single Precision Floating-Point Values Using Non-Temporal Hint

 xmmreg to mem 0000 1111:0010 1011: mod xmmreg r/m

MOVNTQ—Store Quadword Using Non-Temporal Hint

 mmreg to mem 0000 1111:1110 0111: mod mmreg r/m

PREFETCHT0—Prefetch Temporal to All Cache Levels 0000 1111:0001 1000:modA 001 mem

PREFETCHT1—Prefetch Temporal to First Level Cache 0000 1111:0001 1000:modA 010 mem

PREFETCHT2—Prefetch Temporal to Second Level Cache 0000 1111:0001 1000:modA 011 mem

PREFETCHNTA—Prefetch Non-Temporal to All Cache Levels 0000 1111:0001 1000:modA 000 mem

SFENCE—Store Fence 0000 1111:1010 1110:11 111 000

Table B-25. Encoding of Granularity of Data Field (gg)

gg Granularity of Data

00 Packed Bytes

01 Packed Words

10 Packed Doublewords

11 Quadword

B-48 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions

Instruction and Format Encoding

ADDPD—Add Packed Double Precision Floating-Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1000:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1000: mod xmmreg r/m

ADDSD—Add Scalar Double Precision Floating-Point Values

 xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1000:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0010:0000 1111:0101 1000: mod xmmreg r/m

ANDNPD—Bitwise Logical AND NOT of Packed Double Precision Floating-Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 0101:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 0101: mod xmmreg r/m

ANDPD—Bitwise Logical AND of Packed Double Precision Floating-Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 0100:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 0100: mod xmmreg r/m

CMPPD—Compare Packed Double Precision Floating-Point Values

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:1100 0010:11 xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:1100 0010: mod xmmreg r/m: imm8

CMPSD—Compare Scalar Double Precision Floating-Point Values

 xmmreg2 to xmmreg1, imm8 1111 0010:0000 1111:1100 0010:11 xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 11110 010:0000 1111:1100 0010: mod xmmreg r/m: imm8

COMISD—Compare Scalar Ordered Double Precision Floating-Point Values and Set EFLAGS

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0010 1111:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0010 1111: mod xmmreg r/m

CVTPI2PD—Convert Packed Doubleword Integers to Packed Double Precision Floating-Point Values

 mmreg to xmmreg 0110 0110:0000 1111:0010 1010:11 xmmreg1 mmreg1

 mem to xmmreg 0110 0110:0000 1111:0010 1010: mod xmmreg r/m

CVTPD2PI—Convert Packed Double Precision Floating-Point Values to Packed Doubleword Integers

 xmmreg to mmreg 0110 0110:0000 1111:0010 1101:11 mmreg1 xmmreg1

 mem to mmreg 0110 0110:0000 1111:0010 1101: mod mmreg r/m

CVTSI2SD—Convert Signed Integer to Scalar Double Precision Floating-Point Value

 r32 to xmmreg1 1111 0010:0000 1111:0010 1010:11 xmmreg r32

 mem to xmmreg 1111 0010:0000 1111:0010 1010: mod xmmreg r/m

CVTSD2SI—Convert Scalar Double Precision Floating-Point Value to Signed Integer

 xmmreg to r32 1111 0010:0000 1111:0010 1101:11 r32 xmmreg

 mem to r32 1111 0010:0000 1111:0010 1101: mod r32 r/m

CVTTPD2PI—Convert with Truncation Packed Double Precision Floating-Point Values to Packed Doubleword Integers

 xmmreg to mmreg 0110 0110:0000 1111:0010 1100:11 mmreg xmmreg

 mem to mmreg 0110 0110:0000 1111:0010 1100: mod mmreg r/m

CVTTSD2SI—Convert with Truncation Scalar Double Precision Floating-Point Value to Signed Integer

 xmmreg to r32 1111 0010:0000 1111:0010 1100:11 r32 xmmreg

Vol. 2D B-49

INSTRUCTION FORMATS AND ENCODINGS

 mem to r32 1111 0010:0000 1111:0010 1100: mod r32 r/m

CVTPD2PS—Covert Packed Double Precision Floating-Point Values to Packed Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1010:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1010: mod xmmreg r/m

CVTPS2PD—Covert Packed Single Precision Floating-Point Values to Packed Double Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0101 1010:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1010: mod xmmreg r/m

CVTSD2SS—Covert Scalar Double Precision Floating-Point Value to Scalar Single Precision Floating-Point Value

 xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1010:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0010:0000 1111:0101 1010: mod xmmreg r/m

CVTSS2SD—Covert Scalar Single Precision Floating-Point Value to Scalar Double Precision Floating-Point Value

 xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1010:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0011:00001 111:0101 1010: mod xmmreg r/m

CVTPD2DQ—Convert Packed Double Precision Floating-Point Values to Packed Doubleword Integers

 xmmreg2 to xmmreg1 1111 0010:0000 1111:1110 0110:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0010:0000 1111:1110 0110: mod xmmreg r/m

CVTTPD2DQ—Convert With Truncation Packed Double Precision Floating-Point Values to Packed Doubleword Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 0110:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1110 0110: mod xmmreg r/m

CVTDQ2PD—Convert Packed Doubleword Integers to Packed Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 1111 0011:0000 1111:1110 0110:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0011:0000 1111:1110 0110: mod xmmreg r/m

CVTPS2DQ—Convert Packed Single Precision Floating-Point Values to Packed Doubleword Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1011:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1011: mod xmmreg r/m

CVTTPS2DQ—Convert With Truncation Packed Single Precision Floating-Point Values to Packed Doubleword Integers

 xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1011:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 1011: mod xmmreg r/m

CVTDQ2PS—Convert Packed Doubleword Integers to Packed Double Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0101 1011:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1011: mod xmmreg r/m

DIVPD—Divide Packed Double Precision Floating-Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1110:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1110: mod xmmreg r/m

DIVSD—Divide Scalar Double Precision Floating-Point Values

 xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1110:11 xmmreg1 xmmreg2

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding

B-50 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

 mem to xmmreg 1111 0010:0000 1111:0101 1110: mod xmmreg r/m

MAXPD—Return Maximum Packed Double Precision Floating-Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1111:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1111: mod xmmreg r/m

MAXSD—Return Maximum Scalar Double Precision Floating-Point Value

 xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1111:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0010:0000 1111:0101 1111: mod xmmreg r/m

MINPD—Return Minimum Packed Double Precision Floating-Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1101:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1101: mod xmmreg r/m

MINSD—Return Minimum Scalar Double Precision Floating-Point Value

 xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1101:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0010:0000 1111:0101 1101: mod xmmreg r/m

MOVAPD—Move Aligned Packed Double Precision Floating-Point Values

 xmmreg1 to xmmreg2 0110 0110:0000 1111:0010 1001:11 xmmreg2 xmmreg1

 xmmreg1 to mem 0110 0110:0000 1111:0010 1001: mod xmmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0010 1000:11 xmmreg1 xmmreg2

 mem to xmmreg1 0110 0110:0000 1111:0010 1000: mod xmmreg r/m

MOVHPD—Move High Packed Double Precision Floating-Point Values

 xmmreg to mem 0110 0110:0000 1111:0001 0111: mod xmmreg r/m

 mem to xmmreg 0110 0110:0000 1111:0001 0110: mod xmmreg r/m

MOVLPD—Move Low Packed Double Precision Floating-Point Values

 xmmreg to mem 0110 0110:0000 1111:0001 0011: mod xmmreg r/m

 mem to xmmreg 0110 0110:0000 1111:0001 0010: mod xmmreg r/m

MOVMSKPD—Extract Packed Double Precision Floating-Point Sign Mask

 xmmreg to r32 0110 0110:0000 1111:0101 0000:11 r32 xmmreg

MOVSD—Move Scalar Double Precision Floating-Point Values

 xmmreg1 to xmmreg2 1111 0010:0000 1111:0001 0001:11 xmmreg2 xmmreg1

 xmmreg1 to mem 1111 0010:0000 1111:0001 0001: mod xmmreg r/m

 xmmreg2 to xmmreg1 1111 0010:0000 1111:0001 0000:11 xmmreg1 xmmreg2

 mem to xmmreg1 1111 0010:0000 1111:0001 0000: mod xmmreg r/m

MOVUPD—Move Unaligned Packed Double Precision Floating-Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0001 0001:11 xmmreg2 xmmreg1

 mem to xmmreg1 0110 0110:0000 1111:0001 0001: mod xmmreg r/m

 xmmreg1 to xmmreg2 0110 0110:0000 1111:0001 0000:11 xmmreg1 xmmreg2

 xmmreg1 to mem 0110 0110:0000 1111:0001 0000: mod xmmreg r/m

MULPD—Multiply Packed Double Precision Floating-Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1001:11 xmmreg1 xmmreg2

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding

Vol. 2D B-51

INSTRUCTION FORMATS AND ENCODINGS

 mem to xmmreg 0110 0110:0000 1111:0101 1001: mod xmmreg r/m

MULSD—Multiply Scalar Double Precision Floating-Point Values

 xmmreg2 to xmmreg1 1111 0010:00001111:01011001:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0010:00001111:01011001: mod xmmreg r/m

ORPD—Bitwise Logical OR of Double Precision Floating-Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 0110:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 0110: mod xmmreg r/m

SHUFPD—Shuffle Packed Double Precision Floating-Point Values

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:1100 0110:11 xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:1100 0110: mod xmmreg r/m: imm8

SQRTPD—Compute Square Roots of Packed Double Precision Floating-Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 0001:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 0001: mod xmmreg r/m

SQRTSD—Compute Square Root of Scalar Double Precision Floating-Point Value

 xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 0001:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0010:0000 1111:0101 0001: mod xmmreg r/m

SUBPD—Subtract Packed Double Precision Floating-Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1100:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1100: mod xmmreg r/m

SUBSD—Subtract Scalar Double Precision Floating-Point Values

 xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1100:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0010:0000 1111:0101 1100: mod xmmreg r/m

UCOMISD—Unordered Compare Scalar Ordered Double Precision Floating-Point Values and Set EFLAGS

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0010 1110:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0010 1110: mod xmmreg r/m

UNPCKHPD—Unpack and Interleave High Packed Double Precision Floating-Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0001 0101:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0001 0101: mod xmmreg r/m

UNPCKLPD—Unpack and Interleave Low Packed Double Precision Floating-Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0001 0100:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0001 0100: mod xmmreg r/m

XORPD—Bitwise Logical OR of Double Precision Floating-Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 0111:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 0111: mod xmmreg r/m

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding

B-52 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

Table B-27. Formats and Encodings of SSE2 Integer Instructions

Instruction and Format Encoding

MOVD—Move Doubleword

 reg to xmmreg 0110 0110:0000 1111:0110 1110: 11 xmmreg reg

reg from xmmreg 0110 0110:0000 1111:0111 1110: 11 xmmreg reg

mem to xmmreg 0110 0110:0000 1111:0110 1110: mod xmmreg r/m

mem from xmmreg 0110 0110:0000 1111:0111 1110: mod xmmreg r/m

MOVDQA—Move Aligned Double Quadword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 1111:11 xmmreg1 xmmreg2

 xmmreg2 from xmmreg1 0110 0110:0000 1111:0111 1111:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0110 1111: mod xmmreg r/m

 mem from xmmreg 0110 0110:0000 1111:0111 1111: mod xmmreg r/m

MOVDQU—Move Unaligned Double Quadword

 xmmreg2 to xmmreg1 1111 0011:0000 1111:0110 1111:11 xmmreg1 xmmreg2

xmmreg2 from xmmreg1 1111 0011:0000 1111:0111 1111:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0110 1111: mod xmmreg r/m

 mem from xmmreg 1111 0011:0000 1111:0111 1111: mod xmmreg r/m

MOVQ2DQ—Move Quadword from MMX to XMM Register

 mmreg to xmmreg 1111 0011:0000 1111:1101 0110:11 mmreg1 mmreg2

MOVDQ2Q—Move Quadword from XMM to MMX Register

 xmmreg to mmreg 1111 0010:0000 1111:1101 0110:11 mmreg1 mmreg2

MOVQ—Move Quadword

xmmreg2 to xmmreg1 1111 0011:0000 1111:0111 1110: 11 xmmreg1 xmmreg2

xmmreg2 from xmmreg1 0110 0110:0000 1111:1101 0110: 11 xmmreg1 xmmreg2

mem to xmmreg 1111 0011:0000 1111:0111 1110: mod xmmreg r/m

mem from xmmreg 0110 0110:0000 1111:1101 0110: mod xmmreg r/m

PACKSSDW1—Pack Dword To Word Data (signed with saturation)

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 1011: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111:0110 1011: mod xmmreg r/m

PACKSSWB—Pack Word To Byte Data (signed with saturation)

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 0011: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111:0110 0011: mod xmmreg r/m

PACKUSWB—Pack Word To Byte Data (unsigned with saturation)

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 0111: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111:0110 0111: mod xmmreg r/m

PADDQ—Add Packed Quadword Integers

 mmreg2 to mmreg1 0000 1111:1101 0100:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1101 0100: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 0100:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1101 0100: mod xmmreg r/m

Vol. 2D B-53

INSTRUCTION FORMATS AND ENCODINGS

PADD—Add With Wrap-around

 xmmreg2 to xmmreg1 0110 0110:0000 1111: 1111 11gg: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111: 1111 11gg: mod xmmreg r/m

PADDS—Add Signed With Saturation

 xmmreg2 to xmmreg1 0110 0110:0000 1111: 1110 11gg: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111: 1110 11gg: mod xmmreg r/m

PADDUS—Add Unsigned With Saturation

 xmmreg2 to xmmreg1 0110 0110:0000 1111: 1101 11gg: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111: 1101 11gg: mod xmmreg r/m

PAND—Bitwise And

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 1011: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1101 1011: mod xmmreg r/m

PANDN—Bitwise AndNot

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 1111: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1101 1111: mod xmmreg r/m

PAVGB—Average Packed Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:11100 000:11 xmmreg1 xmmreg2

 mem to xmmreg 01100110:00001111:11100000 mod xmmreg r/m

PAVGW—Average Packed Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 0011:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1110 0011 mod xmmreg r/m

PCMPEQ—Packed Compare For Equality

 xmmreg1 with xmmreg2 0110 0110:0000 1111:0111 01gg: 11 xmmreg1 xmmreg2

 xmmreg with memory 0110 0110:0000 1111:0111 01gg: mod xmmreg r/m

PCMPGT—Packed Compare Greater (signed)

 xmmreg1 with xmmreg2 0110 0110:0000 1111:0110 01gg: 11 xmmreg1 xmmreg2

 xmmreg with memory 0110 0110:0000 1111:0110 01gg: mod xmmreg r/m

PEXTRW—Extract Word

 xmmreg to reg32, imm8 0110 0110:0000 1111:1100 0101:11 r32 xmmreg: imm8

PINSRW—Insert Word

 reg32 to xmmreg, imm8 0110 0110:0000 1111:1100 0100:11 xmmreg r32: imm8

 m16 to xmmreg, imm8 0110 0110:0000 1111:1100 0100: mod xmmreg r/m: imm8

PMADDWD—Packed Multiply Add

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1111 0101: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1111 0101: mod xmmreg r/m

PMAXSW—Maximum of Packed Signed Word Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 1110:11 xmmreg1 xmmreg2

 mem to xmmreg 01100110:00001111:11101110: mod xmmreg r/m

Table B-27. Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding

B-54 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

PMAXUB—Maximum of Packed Unsigned Byte Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 1110:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1101 1110: mod xmmreg r/m

PMINSW—Minimum of Packed Signed Word Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 1010:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1110 1010: mod xmmreg r/m

PMINUB—Minimum of Packed Unsigned Byte Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 1010:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1101 1010 mod xmmreg r/m

PMOVMSKB—Move Byte Mask To Integer

 xmmreg to reg32 0110 0110:0000 1111:1101 0111:11 r32 xmmreg

PMULHUW—Packed multiplication, store high word (unsigned)

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 0100: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1110 0100: mod xmmreg r/m

PMULHW—Packed Multiplication, store high word

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 0101: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1110 0101: mod xmmreg r/m

PMULLW—Packed Multiplication, store low word

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 0101: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1101 0101: mod xmmreg r/m

PMULUDQ—Multiply Packed Unsigned Doubleword Integers

 mmreg2 to mmreg1 0000 1111:1111 0100:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1111 0100: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:00001111:1111 0100:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:00001111:1111 0100: mod xmmreg r/m

POR—Bitwise Or

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 1011: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1110 1011: mod xmmreg r/m

PSADBW—Compute Sum of Absolute Differences

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1111 0110:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1111 0110: mod xmmreg r/m

PSHUFLW—Shuffle Packed Low Words

 xmmreg2 to xmmreg1, imm8 1111 0010:0000 1111:0111 0000:11 xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 1111 0010:0000 1111:0111 0000:11 mod xmmreg r/m: imm8

PSHUFHW—Shuffle Packed High Words

 xmmreg2 to xmmreg1, imm8 1111 0011:0000 1111:0111 0000:11 xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 1111 0011:0000 1111:0111 0000: mod xmmreg r/m: imm8

PSHUFD—Shuffle Packed Doublewords

Table B-27. Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding

Vol. 2D B-55

INSTRUCTION FORMATS AND ENCODINGS

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0111 0000:11 xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0111 0000: mod xmmreg r/m: imm8

PSLLDQ—Shift Double Quadword Left Logical

 xmmreg, imm8 0110 0110:0000 1111:0111 0011:11 111 xmmreg: imm8

PSLL—Packed Shift Left Logical

 xmmreg1 by xmmreg2 0110 0110:0000 1111:1111 00gg: 11 xmmreg1 xmmreg2

 xmmreg by memory 0110 0110:0000 1111:1111 00gg: mod xmmreg r/m

 xmmreg by immediate 0110 0110:0000 1111:0111 00gg: 11 110 xmmreg: imm8

PSRA—Packed Shift Right Arithmetic

 xmmreg1 by xmmreg2 0110 0110:0000 1111:1110 00gg: 11 xmmreg1 xmmreg2

 xmmreg by memory 0110 0110:0000 1111:1110 00gg: mod xmmreg r/m

 xmmreg by immediate 0110 0110:0000 1111:0111 00gg: 11 100 xmmreg: imm8

PSRLDQ—Shift Double Quadword Right Logical

 xmmreg, imm8 0110 0110:00001111:01110011:11 011 xmmreg: imm8

PSRL—Packed Shift Right Logical

 xmmreg1 by xmmreg2 0110 0110:0000 1111:1101 00gg: 11 xmmreg1 xmmreg2

 xmmreg by memory 0110 0110:0000 1111:1101 00gg: mod xmmreg r/m

 xmmreg by immediate 0110 0110:0000 1111:0111 00gg: 11 010 xmmreg: imm8

PSUBQ—Subtract Packed Quadword Integers

 mmreg2 to mmreg1 0000 1111:11111 011:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1111 1011: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1111 1011:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1111 1011: mod xmmreg r/m

PSUB—Subtract With Wrap-around

 xmmreg2 from xmmreg1 0110 0110:0000 1111:1111 10gg: 11 xmmreg1 xmmreg2

 memory from xmmreg 0110 0110:0000 1111:1111 10gg: mod xmmreg r/m

PSUBS—Subtract Signed With Saturation

 xmmreg2 from xmmreg1 0110 0110:0000 1111:1110 10gg: 11 xmmreg1 xmmreg2

 memory from xmmreg 0110 0110:0000 1111:1110 10gg: mod xmmreg r/m

PSUBUS—Subtract Unsigned With Saturation

 xmmreg2 from xmmreg1 0000 1111:1101 10gg: 11 xmmreg1 xmmreg2

 memory from xmmreg 0000 1111:1101 10gg: mod xmmreg r/m

PUNPCKH—Unpack High Data To Next Larger Type

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 10gg:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0110 10gg: mod xmmreg r/m

PUNPCKHQDQ—Unpack High Data

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 1101:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0110 1101: mod xmmreg r/m

Table B-27. Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding

B-56 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

PUNPCKL—Unpack Low Data To Next Larger Type

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 00gg:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0110 00gg: mod xmmreg r/m

PUNPCKLQDQ—Unpack Low Data

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 1100:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0110 1100: mod xmmreg r/m

PXOR—Bitwise Xor

xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 1111: 11 xmmreg1 xmmreg2

memory to xmmreg 0110 0110:0000 1111:1110 1111: mod xmmreg r/m

Table B-28. Format and Encoding of SSE2 Cacheability Instructions

Instruction and Format Encoding

MASKMOVDQU—Store Selected Bytes of Double Quadword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1111 0111:11 xmmreg1 xmmreg2

CLFLUSH—Flush Cache Line

 mem 0000 1111:1010 1110: mod 111 r/m

MOVNTPD—Store Packed Double Precision Floating-Point Values Using Non-Temporal Hint

 xmmreg to mem 0110 0110:0000 1111:0010 1011: mod xmmreg r/m

MOVNTDQ—Store Double Quadword Using Non-Temporal Hint

 xmmreg to mem 0110 0110:0000 1111:1110 0111: mod xmmreg r/m

MOVNTI—Store Doubleword Using Non-Temporal Hint

 reg to mem 0000 1111:1100 0011: mod reg r/m

PAUSE—Spin Loop Hint 1111 0011:1001 0000

LFENCE—Load Fence 0000 1111:1010 1110: 11 101 000

MFENCE—Memory Fence 0000 1111:1010 1110: 11 110 000

Table B-27. Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding

Vol. 2D B-57

INSTRUCTION FORMATS AND ENCODINGS

B.10 SSE3 FORMATS AND ENCODINGS TABLE
The tables in this section provide SSE3 formats and encodings. Some SSE3 instructions require a mandatory prefix
(66H, F2H, F3H) as part of the two-byte opcode. These prefixes are included in the tables.

When in IA-32e mode, use of the REX.R prefix permits instructions that use general purpose and XMM registers to
access additional registers. Some instructions require the REX.W prefix to promote the instruction to 64-bit opera-
tion. Instructions that require the REX.W prefix are listed (with their opcodes) in Section B.13.

Table B-29. Formats and Encodings of SSE3 Floating-Point Instructions

Instruction and Format Encoding

ADDSUBPD—Add /Sub packed DP FP numbers from XMM2/Mem to XMM1

xmmreg2 to xmmreg1 01100110:00001111:11010000:11 xmmreg1 xmmreg2

mem to xmmreg 01100110:00001111:11010000: mod xmmreg r/m

ADDSUBPS—Add /Sub packed SP FP numbers from XMM2/Mem to XMM1

xmmreg2 to xmmreg1 11110010:00001111:11010000:11 xmmreg1 xmmreg2

mem to xmmreg 11110010:00001111:11010000: mod xmmreg r/m

HADDPD—Add horizontally packed DP FP numbers XMM2/Mem to XMM1

xmmreg2 to xmmreg1 01100110:00001111:01111100:11 xmmreg1 xmmreg2

mem to xmmreg 01100110:00001111:01111100: mod xmmreg r/m

HADDPS—Add horizontally packed SP FP numbers XMM2/Mem to XMM1

xmmreg2 to xmmreg1 11110010:00001111:01111100:11 xmmreg1 xmmreg2

mem to xmmreg 11110010:00001111:01111100: mod xmmreg r/m

HSUBPD—Sub horizontally packed DP FP numbers XMM2/Mem to XMM1

xmmreg2 to xmmreg1 01100110:00001111:01111101:11 xmmreg1 xmmreg2

mem to xmmreg 01100110:00001111:01111101: mod xmmreg r/m

HSUBPS—Sub horizontally packed SP FP numbers XMM2/Mem to XMM1

xmmreg2 to xmmreg1 11110010:00001111:01111101:11 xmmreg1 xmmreg2

mem to xmmreg 11110010:00001111:01111101: mod xmmreg r/m

Table B-30. Formats and Encodings for SSE3 Event Management Instructions

Instruction and Format Encoding

MONITOR—Set up a linear address range to be monitored by hardware

eax, ecx, edx 0000 1111 : 0000 0001:11 001 000

MWAIT—Wait until write-back store performed within the range specified by the instruction MONITOR

eax, ecx 0000 1111 : 0000 0001:11 001 001

Table B-31. Formats and Encodings for SSE3 Integer and Move Instructions

Instruction and Format Encoding

FISTTP—Store ST in int16 (chop) and pop

m16int 11011 111 : modA 001 r/m

FISTTP—Store ST in int32 (chop) and pop

m32int 11011 011 : modA 001 r/m

FISTTP—Store ST in int64 (chop) and pop

B-58 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

B.11 SSSE3 FORMATS AND ENCODING TABLE
The tables in this section provide SSSE3 formats and encodings. Some SSSE3 instructions require a mandatory
prefix (66H) as part of the three-byte opcode. These prefixes are included in the table below.

m64int 11011 101 : modA 001 r/m

LDDQU—Load unaligned integer 128-bit

xmm, m128 11110010:00001111:11110000: modA xmmreg r/m

MOVDDUP—Move 64 bits representing one DP data from XMM2/Mem to XMM1 and duplicate

xmmreg2 to xmmreg1 11110010:00001111:00010010:11 xmmreg1 xmmreg2

mem to xmmreg 11110010:00001111:00010010: mod xmmreg r/m

MOVSHDUP—Move 128 bits representing 4 SP data from XMM2/Mem to XMM1 and duplicate high

xmmreg2 to xmmreg1 11110011:00001111:00010110:11 xmmreg1 xmmreg2

mem to xmmreg 11110011:00001111:00010110: mod xmmreg r/m

MOVSLDUP—Move 128 bits representing 4 SP data from XMM2/Mem to XMM1 and duplicate low

xmmreg2 to xmmreg1 11110011:00001111:00010010:11 xmmreg1 xmmreg2

mem to xmmreg 11110011:00001111:00010010: mod xmmreg r/m

Table B-32. Formats and Encodings for SSSE3 Instructions

Instruction and Format Encoding

PABSB—Packed Absolute Value Bytes

 mmreg2 to mmreg1 0000 1111:0011 1000: 0001 1100:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0001 1100: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0001 1100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0001 1100: mod xmmreg r/m

PABSD—Packed Absolute Value Double Words

 mmreg2 to mmreg1 0000 1111:0011 1000: 0001 1110:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0001 1110: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0001 1110:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0001 1110: mod xmmreg r/m

PABSW—Packed Absolute Value Words

 mmreg2 to mmreg1 0000 1111:0011 1000: 0001 1101:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0001 1101: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0001 1101:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0001 1101: mod xmmreg r/m

PALIGNR—Packed Align Right

 mmreg2 to mmreg1, imm8 0000 1111:0011 1010: 0000 1111:11 mmreg1 mmreg2: imm8

Table B-31. Formats and Encodings for SSE3 Integer and Move Instructions (Contd.)

Instruction and Format Encoding

Vol. 2D B-59

INSTRUCTION FORMATS AND ENCODINGS

 mem to mmreg, imm8 0000 1111:0011 1010: 0000 1111: mod mmreg r/m: imm8

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0000 1111:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1111: mod xmmreg r/m:
imm8

PHADDD—Packed Horizontal Add Double Words

 mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0010:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 0010: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0010:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0010: mod xmmreg r/m

PHADDSW—Packed Horizontal Add and Saturate

 mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0011:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 0011: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0011:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0011: mod xmmreg r/m

PHADDW—Packed Horizontal Add Words

 mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0001:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 0001: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0001:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0001: mod xmmreg r/m

PHSUBD—Packed Horizontal Subtract Double Words

 mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0110:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 0110: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0110:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0110: mod xmmreg r/m

PHSUBSW—Packed Horizontal Subtract and Saturate

 mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0111:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 0111: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0111:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0111: mod xmmreg r/m

PHSUBW—Packed Horizontal Subtract Words

 mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0101:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 0101: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0101:11 xmmreg1
xmmreg2

Table B-32. Formats and Encodings for SSSE3 Instructions (Contd.)

Instruction and Format Encoding

B-60 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

B.12 AESNI AND PCLMULQDQ INSTRUCTION FORMATS AND ENCODINGS
Table B-33 shows the formats and encodings for AESNI and PCLMULQDQ instructions.

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0101: mod xmmreg r/m

PMADDUBSW—Multiply and Add Packed Signed and Unsigned Bytes

 mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0100:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 0100: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0100: mod xmmreg r/m

PMULHRSW—Packed Multiply HIgn with Round and Scale

 mmreg2 to mmreg1 0000 1111:0011 1000: 0000 1011:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 1011: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 1011:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1011: mod xmmreg r/m

PSHUFB—Packed Shuffle Bytes

 mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0000:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 0000: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0000:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0000: mod xmmreg r/m

PSIGNB—Packed Sign Bytes

 mmreg2 to mmreg1 0000 1111:0011 1000: 0000 1000:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 1000: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 1000:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1000: mod xmmreg r/m

PSIGND—Packed Sign Double Words

 mmreg2 to mmreg1 0000 1111:0011 1000: 0000 1010:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 1010: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 1010:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1010: mod xmmreg r/m

PSIGNW—Packed Sign Words

 mmreg2 to mmreg1 0000 1111:0011 1000: 0000 1001:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 1001: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 1001:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1001: mod xmmreg r/m

Table B-32. Formats and Encodings for SSSE3 Instructions (Contd.)

Instruction and Format Encoding

Vol. 2D B-61

INSTRUCTION FORMATS AND ENCODINGS

B.13 SPECIAL ENCODINGS FOR 64-BIT MODE
The following Pentium, P6, MMX, SSE, SSE2, SSE3 instructions are promoted to 64-bit operation in IA-32e mode
by using REX.W. However, these entries are special cases that do not follow the general rules (specified in Section
B.4).

Table B-33. Formats and Encodings of AESNI and PCLMULQDQ Instructions

Instruction and Format Encoding

AESDEC—Perform One Round of an AES Decryption Flow

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101 1110:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1110: mod xmmreg r/m

AESDECLAST—Perform Last Round of an AES Decryption Flow

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101 1111:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1111: mod xmmreg r/m

AESENC—Perform One Round of an AES Encryption Flow

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101 1100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1100: mod xmmreg r/m

AESENCLAST—Perform Last Round of an AES Encryption Flow

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101 1101:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1101: mod xmmreg r/m

AESIMC—Perform the AES InvMixColumn Transformation

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101 1011:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1011: mod xmmreg r/m

AESKEYGENASSIST—AES Round Key Generation Assist

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010:1101 1111:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010:1101 1111: mod xmmreg r/m:
imm8

PCLMULQDQ—Carry-Less Multiplication Quadword

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010:0100 0100:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010:0100 0100: mod xmmreg r/m:
imm8

Table B-34. Special Case Instructions Promoted Using REX.W

Instruction and Format Encoding

CMOVcc—Conditional Move

B-62 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

register2 to register1 0100 0R0B 0000 1111: 0100 tttn : 11 reg1 reg2

qwordregister2 to qwordregister1 0100 1R0B 0000 1111: 0100 tttn : 11 qwordreg1 qwordreg2

memory to register 0100 0RXB 0000 1111 : 0100 tttn : mod reg r/m

memory64 to qwordregister 0100 1RXB 0000 1111 : 0100 tttn : mod qwordreg r/m

CVTSD2SI—Convert Scalar Double Precision Floating-Point Value to Signed Integer

 xmmreg to r32 0100 0R0B 1111 0010:0000 1111:0010 1101:11 r32
xmmreg

 xmmreg to r64 0100 1R0B 1111 0010:0000 1111:0010 1101:11 r64
xmmreg

 mem64 to r32 0100 0R0XB 1111 0010:0000 1111:0010 1101: mod r32 r/m

 mem64 to r64 0100 1RXB 1111 0010:0000 1111:0010 1101: mod r64 r/m

CVTSI2SS—Convert Signed Integer to Scalar Single Precision Floating-Point Value

 r32 to xmmreg1 0100 0R0B 1111 0011:0000 1111:0010 1010:11 xmmreg
r32

 r64 to xmmreg1 0100 1R0B 1111 0011:0000 1111:0010 1010:11 xmmreg
r64

 mem to xmmreg 0100 0RXB 1111 0011:0000 1111:0010 1010: mod xmmreg
r/m

 mem64 to xmmreg 0100 1RXB 1111 0011:0000 1111:0010 1010: mod xmmreg
r/m

CVTSI2SD—Convert Signed Integer to Scalar Double Precision Floating-Point Value

 r32 to xmmreg1 0100 0R0B 1111 0010:0000 1111:0010 1010:11 xmmreg
r32

 r64 to xmmreg1 0100 1R0B 1111 0010:0000 1111:0010 1010:11 xmmreg
r64

 mem to xmmreg 0100 0RXB 1111 0010:0000 1111:00101 010: mod xmmreg
r/m

 mem64 to xmmreg 0100 1RXB 1111 0010:0000 1111:0010 1010: mod xmmreg
r/m

CVTSS2SI—Convert Scalar Single Precision Floating-Point Value to Signed Integer

 xmmreg to r32 0100 0R0B 1111 0011:0000 1111:0010 1101:11 r32
xmmreg

 xmmreg to r64 0100 1R0B 1111 0011:0000 1111:0010 1101:11 r64
xmmreg

 mem to r32 0100 0RXB 11110011:00001111:00101101: mod r32 r/m

 mem32 to r64 0100 1RXB 1111 0011:0000 1111:0010 1101: mod r64 r/m

CVTTSD2SI—Convert with Truncation Scalar Double Precision Floating-Point Value to Signed Integer

 xmmreg to r32 0100 0R0B 11110010:00001111:00101100:11 r32 xmmreg

 xmmreg to r64 0100 1R0B 1111 0010:0000 1111:0010 1100:11 r64
xmmreg

 mem64 to r32 0100 0RXB 1111 0010:0000 1111:0010 1100: mod r32 r/m

 mem64 to r64 0100 1RXB 1111 0010:0000 1111:0010 1100: mod r64 r/m

Table B-34. Special Case Instructions Promoted Using REX.W (Contd.)

Instruction and Format Encoding

Vol. 2D B-63

INSTRUCTION FORMATS AND ENCODINGS

CVTTSS2SI—Convert with Truncation Scalar Single Precision Floating-Point Value to Signed Integer

 xmmreg to r32 0100 0R0B 1111 0011:0000 1111:0010 1100:11 r32
xmmreg1

 xmmreg to r64 0100 1R0B 1111 0011:0000 1111:0010 1100:11 r64
xmmreg1

 mem to r32 0100 0RXB 1111 0011:0000 1111:0010 1100: mod r32 r/m

 mem32 to r64 0100 1RXB 1111 0011:0000 1111:0010 1100: mod r64 r/m

MOVD/MOVQ—Move doubleword

reg to mmxreg 0100 0R0B 0000 1111:0110 1110: 11 mmxreg reg

qwordreg to mmxreg 0100 1R0B 0000 1111:0110 1110: 11 mmxreg qwordreg

reg from mmxreg 0100 0R0B 0000 1111:0111 1110: 11 mmxreg reg

qwordreg from mmxreg 0100 1R0B 0000 1111:0111 1110: 11 mmxreg qwordreg

mem to mmxreg 0100 0RXB 0000 1111:0110 1110: mod mmxreg r/m

mem64 to mmxreg 0100 1RXB 0000 1111:0110 1110: mod mmxreg r/m

mem from mmxreg 0100 0RXB 0000 1111:0111 1110: mod mmxreg r/m

mem64 from mmxreg 0100 1RXB 0000 1111:0111 1110: mod mmxreg r/m

mmxreg with memory 0100 0RXB 0000 1111:0110 01gg: mod mmxreg r/m

MOVMSKPS—Extract Packed Single Precision Floating-Point Sign Mask

 xmmreg to r32 0100 0R0B 0000 1111:0101 0000:11 r32 xmmreg

 xmmreg to r64 0100 1R0B 00001111:01010000:11 r64 xmmreg

PEXTRW—Extract Word

 mmreg to reg32, imm8 0100 0R0B 0000 1111:1100 0101:11 r32 mmreg: imm8

 mmreg to reg64, imm8 0100 1R0B 0000 1111:1100 0101:11 r64 mmreg: imm8

 xmmreg to reg32, imm8 0100 0R0B 0110 0110 0000 1111:1100 0101:11 r32
xmmreg: imm8

 xmmreg to reg64, imm8 0100 1R0B 0110 0110 0000 1111:1100 0101:11 r64
xmmreg: imm8

PINSRW—Insert Word

 reg32 to mmreg, imm8 0100 0R0B 0000 1111:1100 0100:11 mmreg r32: imm8

 reg64 to mmreg, imm8 0100 1R0B 0000 1111:1100 0100:11 mmreg r64: imm8

 m16 to mmreg, imm8 0100 0R0B 0000 1111:1100 0100 mod mmreg r/m: imm8

 m16 to mmreg, imm8 0100 1RXB 0000 1111:11000100 mod mmreg r/m: imm8

 reg32 to xmmreg, imm8 0100 0RXB 0110 0110 0000 1111:1100 0100:11 xmmreg
r32: imm8

 reg64 to xmmreg, imm8 0100 0RXB 0110 0110 0000 1111:1100 0100:11 xmmreg
r64: imm8

 m16 to xmmreg, imm8 0100 0RXB 0110 0110 0000 1111:1100 0100 mod xmmreg
r/m: imm8

 m16 to xmmreg, imm8 0100 1RXB 0110 0110 0000 1111:1100 0100 mod xmmreg
r/m: imm8

PMOVMSKB—Move Byte Mask To Integer

Table B-34. Special Case Instructions Promoted Using REX.W (Contd.)

Instruction and Format Encoding

B-64 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

B.14 SSE4.1 FORMATS AND ENCODING TABLE
The tables in this section provide SSE4.1 formats and encodings. Some SSE4.1 instructions require a mandatory
prefix (66H, F2H, F3H) as part of the three-byte opcode. These prefixes are included in the tables.
In 64-bit mode, some instructions requires REX.W, the byte sequence of REX.W prefix in the opcode sequence is
shown.

 mmreg to reg32 0100 0RXB 0000 1111:1101 0111:11 r32 mmreg

 mmreg to reg64 0100 1R0B 0000 1111:1101 0111:11 r64 mmreg

 xmmreg to reg32 0100 0RXB 0110 0110 0000 1111:1101 0111:11 r32 mmreg

 xmmreg to reg64 0110 0110 0000 1111:1101 0111:11 r64 xmmreg

Table B-35. Encodings of SSE4.1 instructions

Instruction and Format Encoding

BLENDPD — Blend Packed Double Precision Floats

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1010: 0000 1101:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0000 1101: mod xmmreg r/m

BLENDPS — Blend Packed Single Precision Floats

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1010: 0000 1100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0000 1100: mod xmmreg r/m

BLENDVPD — Variable Blend Packed Double Precision Floats

 xmmreg2 to xmmreg1 <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0101:11 xmmreg1
xmmreg2

 mem to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0101: mod xmmreg r/m

BLENDVPS — Variable Blend Packed Single Precision Floats

 xmmreg2 to xmmreg1 <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0100:11 xmmreg1
xmmreg2

 mem to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0100: mod xmmreg r/m

DPPD — Packed Double Precision Dot Products

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0100 0001:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0001: mod xmmreg r/m:
imm8

DPPS — Packed Single Precision Dot Products

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0100 0000:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0000: mod xmmreg r/m:
imm8

EXTRACTPS — Extract From Packed Single Precision Floats

 reg from xmmreg , imm8 0110 0110:0000 1111:0011 1010: 0001 0111:11 xmmreg reg:
imm8

Table B-34. Special Case Instructions Promoted Using REX.W (Contd.)

Instruction and Format Encoding

Vol. 2D B-65

INSTRUCTION FORMATS AND ENCODINGS

 mem from xmmreg , imm8 0110 0110:0000 1111:0011 1010: 0001 0111: mod xmmreg r/m:
imm8

INSERTPS — Insert Into Packed Single Precision Floats

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0010 0001:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0001: mod xmmreg r/m:
imm8

MOVNTDQA — Load Double Quadword Non-temporal Aligned

 m128 to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1010:11 r/m xmmreg2

MPSADBW — Multiple Packed Sums of Absolute Difference

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0100 0010:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0010: mod xmmreg r/m:
imm8

PACKUSDW — Pack with Unsigned Saturation

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 1011:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1011: mod xmmreg r/m

PBLENDVB — Variable Blend Packed Bytes

 xmmreg2 to xmmreg1 <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0000:11 xmmreg1
xmmreg2

 mem to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0000: mod xmmreg r/m

PBLENDW — Blend Packed Words

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0001 1110:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1110: mod xmmreg r/m:
imm8

PCMPEQQ — Compare Packed Qword Data of Equal

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 1001:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1001: mod xmmreg r/m

PEXTRB — Extract Byte

 reg from xmmreg , imm8 0110 0110:0000 1111:0011 1010: 0001 0100:11 xmmreg reg:
imm8

 xmmreg to mem, imm8 0110 0110:0000 1111:0011 1010: 0001 0100: mod xmmreg r/m:
imm8

PEXTRD — Extract DWord

 reg from xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0001 0110:11 xmmreg reg:
imm8

 xmmreg to mem, imm8 0110 0110:0000 1111:0011 1010: 0001 0110: mod
xmmreg r/m: imm8

Table B-35. Encodings of SSE4.1 instructions

Instruction and Format Encoding

B-66 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

PEXTRQ — Extract QWord

 r64 from xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0001 0110:11 xmmreg
reg: imm8

 m64 from xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0001 0110: mod
xmmreg r/m: imm8

PEXTRW — Extract Word

 reg from xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0001 0101:11 reg xmmreg:
imm8

 mem from xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0001 0101: mod xmmreg r/m:
imm8

PHMINPOSUW — Packed Horizontal Word Minimum

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0100 0001:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0100 0001: mod xmmreg r/m

PINSRB — Extract Byte

 reg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0000:11 xmmreg reg:
imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0000: mod xmmreg r/m:
imm8

PINSRD — Extract DWord

 reg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0010:11 xmmreg reg:
imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0010: mod xmmreg r/m:
imm8

PINSRQ — Extract QWord

 r64 to xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0010 0010:11 xmmreg
reg: imm8

 m64 to xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0010 0010: mod
xmmreg r/m: imm8

PMAXSB — Maximum of Packed Signed Byte Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1100: mod xmmreg r/m

PMAXSD — Maximum of Packed Signed Dword Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1101:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1101: mod xmmreg r/m

PMAXUD — Maximum of Packed Unsigned Dword Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1111:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1111: mod xmmreg r/m

PMAXUW — Maximum of Packed Unsigned Word Integers

Table B-35. Encodings of SSE4.1 instructions

Instruction and Format Encoding

Vol. 2D B-67

INSTRUCTION FORMATS AND ENCODINGS

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1110:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1110: mod xmmreg r/m

PMINSB — Minimum of Packed Signed Byte Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1000:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1000: mod xmmreg r/m

PMINSD — Minimum of Packed Signed Dword Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1001:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1001: mod xmmreg r/m

PMINUD — Minimum of Packed Unsigned Dword Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1011:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1011: mod xmmreg r/m

PMINUW — Minimum of Packed Unsigned Word Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1010:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1010: mod xmmreg r/m

PMOVSXBD — Packed Move Sign Extend - Byte to Dword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0001:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0001: mod xmmreg r/m

PMOVSXBQ — Packed Move Sign Extend - Byte to Qword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0010:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0010: mod xmmreg r/m

PMOVSXBW — Packed Move Sign Extend - Byte to Word

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0000:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0000: mod xmmreg r/m

PMOVSXWD — Packed Move Sign Extend - Word to Dword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0011:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0011: mod xmmreg r/m

PMOVSXWQ — Packed Move Sign Extend - Word to Qword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0100: mod xmmreg r/m

PMOVSXDQ — Packed Move Sign Extend - Dword to Qword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0101:11 xmmreg1
xmmreg2

Table B-35. Encodings of SSE4.1 instructions

Instruction and Format Encoding

B-68 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0101: mod xmmreg r/m

PMOVZXBD — Packed Move Zero Extend - Byte to Dword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0001:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0001: mod xmmreg r/m

PMOVZXBQ — Packed Move Zero Extend - Byte to Qword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0010:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0010: mod xmmreg r/m

PMOVZXBW — Packed Move Zero Extend - Byte to Word

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0000:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0000: mod xmmreg r/m

PMOVZXWD — Packed Move Zero Extend - Word to Dword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0011:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0011: mod xmmreg r/m

PMOVZXWQ — Packed Move Zero Extend - Word to Qword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0100: mod xmmreg r/m

PMOVZXDQ — Packed Move Zero Extend - Dword to Qword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0101:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0101: mod xmmreg r/m

PMULDQ — Multiply Packed Signed Dword Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 1000:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1000: mod xmmreg r/m

PMULLD — Multiply Packed Signed Dword Integers, Store low Result

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0100 0000:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0100 0000: mod xmmreg r/m

PTEST — Logical Compare

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0001 0111:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0001 0111: mod xmmreg r/m

ROUNDPD — Round Packed Double Precision Values

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0000 1001:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1001: mod xmmreg r/m:
imm8

Table B-35. Encodings of SSE4.1 instructions

Instruction and Format Encoding

Vol. 2D B-69

INSTRUCTION FORMATS AND ENCODINGS

B.15 SSE4.2 FORMATS AND ENCODING TABLE

The tables in this section provide SSE4.2 formats and encodings. Some SSE4.2 instructions require a mandatory
prefix (66H, F2H, F3H) as part of the three-byte opcode. These prefixes are included in the tables. In 64-bit mode,
some instructions requires REX.W, the byte sequence of REX.W prefix in the opcode sequence is shown.

ROUNDPS — Round Packed Single Precision Values

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0000 1000:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1000: mod xmmreg r/m:
imm8

ROUNDSD — Round Scalar Double Precision Value

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0000 1011:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1011: mod xmmreg r/m:
imm8

ROUNDSS — Round Scalar Single Precision Value

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0000 1010:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1010: mod xmmreg r/m:
imm8

Table B-36. Encodings of SSE4.2 instructions

Instruction and Format Encoding

CRC32 — Accumulate CRC32

 reg2 to reg1 1111 0010:0000 1111:0011 1000: 1111 000w :11 reg1 reg2

 mem to reg 1111 0010:0000 1111:0011 1000: 1111 000w : mod reg r/m

 bytereg2 to reg1 1111 0010:0100 WR0B:0000 1111:0011 1000: 1111 0000 :11
reg1 bytereg2

 m8 to reg 1111 0010:0100 WR0B:0000 1111:0011 1000: 1111 0000 : mod
reg r/m

 qwreg2 to qwreg1 1111 0010:0100 1R0B:0000 1111:0011 1000: 1111 0001 :11
qwreg1 qwreg2

 mem64 to qwreg 1111 0010:0100 1R0B:0000 1111:0011 1000: 1111 0001 : mod
qwreg r/m

PCMPESTRI— Packed Compare Explicit-Length Strings To Index

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0001:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0001: mod xmmreg r/m

PCMPESTRM— Packed Compare Explicit-Length Strings To Mask

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0000:11 xmmreg1
xmmreg2: imm8

Table B-35. Encodings of SSE4.1 instructions

Instruction and Format Encoding

B-70 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

B.16 AVX FORMATS AND ENCODING TABLE
The tables in this section provide AVX formats and encodings. A mixed form of bit/hex/symbolic forms are used to
express the various bytes:

The C4/C5 and opcode bytes are expressed in hex notation; the first and second payload byte of VEX, the modR/M
byte is expressed in combination of bit/symbolic form. The first payload byte of C4 is expressed as combination of
bits and hex form, with the hex value preceded by an underscore. The VEX bit field to encode upper register 8-15
uses 1’s complement form, each of those bit field is expressed as lower case notation rxb, instead of RXB.

The hybrid bit-nibble-byte form is depicted below:

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0000: mod xmmreg r/m

PCMPISTRI— Packed Compare Implicit-Length String To Index

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0011:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0011: mod xmmreg r/m

PCMPISTRM— Packed Compare Implicit-Length Strings To Mask

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0010:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0010: mod xmmreg r/m

PCMPGTQ— Packed Compare Greater Than

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0111:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0111: mod xmmreg r/m

POPCNT— Return Number of Bits Set to 1

 reg2 to reg1 1111 0011:0000 1111:1011 1000:11 reg1 reg2

 mem to reg1 1111 0011:0000 1111:1011 1000:mod reg1 r/m

 qwreg2 to qwreg1 1111 0011:0100 1R0B:0000 1111:1011 1000:11 reg1 reg2

 mem64 to qwreg1 1111 0011:0100 1R0B:0000 1111:1011 1000:mod reg1 r/m

Figure B-2. Hybrid Notation of VEX-Encoded Key Instruction Bytes

Table B-36. Encodings of SSE4.2 instructions

Instruction and Format Encoding

7 6 ----3 2 1 0 hex notation 7-6 5-3 2-0
R srcreg Lp p Opcode byte Mod Reg* R/MC5

7 6 ----3 2 1 0

W srcreg L pp

Two-Byte VEX

hex notation

7 6 5 hex notation 7-6 5-3 2-0

R X B Opcode byte Mod Reg R/MC4

4 ----- 0

0_hex

mmmmm

Three-Byte VEX

Vol. 2D B-71

INSTRUCTION FORMATS AND ENCODINGS

Table B-37. Encodings of AVX Instructions
Instruction and Format Encoding

VBLENDPD — Blend Packed Double Precision Floats

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:0D:11 xmmreg1 xmmreg3: imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0D:mod xmmreg1 r/m: imm

 ymmreg2 with ymmreg3 into ymmreg1 C4: rxb0_3: w ymmreg2 101:0D:11 ymmreg1 ymmreg3: imm

 ymmreg2 with mem to ymmreg1 C4: rxb0_3: w ymmreg2 101:0D:mod ymmreg1 r/m: imm

VBLENDPS — Blend Packed Single Precision Floats

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:0C:11 xmmreg1 xmmreg3: imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0C:mod xmmreg1 r/m: imm

 ymmreg2 with ymmreg3 into ymmreg1 C4: rxb0_3: w ymmreg2 101:0C:11 ymmreg1 ymmreg3: imm

 ymmreg2 with mem to ymmreg1 C4: rxb0_3: w ymmreg2 101:0C:mod ymmreg1 r/m: imm

VBLENDVPD — Variable Blend Packed Double Precision Floats

 xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as
mask

C4: rxb0_3: 0 xmmreg2 001:4B:11 xmmreg1 xmmreg3: xmmreg4

 xmmreg2 with mem to xmmreg1 using xmmreg4 as mask C4: rxb0_3: 0 xmmreg2 001:4B:mod xmmreg1 r/m: xmmreg4

 ymmreg2 with ymmreg3 into ymmreg1 using ymmreg4 as
mask

C4: rxb0_3: 0 ymmreg2 101:4B:11 ymmreg1 ymmreg3: ymmreg4

 ymmreg2 with mem to ymmreg1 using ymmreg4 as mask C4: rxb0_3: 0 ymmreg2 101:4B:mod ymmreg1 r/m: ymmreg4

VBLENDVPS — Variable Blend Packed Single Precision Floats

 xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as
mask

C4: rxb0_3: 0 xmmreg2 001:4A:11 xmmreg1 xmmreg3: xmmreg4

 xmmreg2 with mem to xmmreg1 using xmmreg4 as mask C4: rxb0_3: 0 xmmreg2 001:4A:mod xmmreg1 r/m: xmmreg4

 ymmreg2 with ymmreg3 into ymmreg1 using ymmreg4 as
mask

C4: rxb0_3: 0 ymmreg2 101:4A:11 ymmreg1 ymmreg3: ymmreg4

 ymmreg2 with mem to ymmreg1 using ymmreg4 as mask C4: rxb0_3: 0 ymmreg2 101:4A:mod ymmreg1 r/m: ymmreg4

VDPPD — Packed Double Precision Dot Products

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:41:11 xmmreg1 xmmreg3: imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:41:mod xmmreg1 r/m: imm

VDPPS — Packed Single Precision Dot Products

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:40:11 xmmreg1 xmmreg3: imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:40:mod xmmreg1 r/m: imm

 ymmreg2 with ymmreg3 into ymmreg1 C4: rxb0_3: w ymmreg2 101:40:11 ymmreg1 ymmreg3: imm

 ymmreg2 with mem to ymmreg1 C4: rxb0_3: w ymmreg2 101:40:mod ymmreg1 r/m: imm

VEXTRACTPS — Extract From Packed Single Precision Floats

 reg from xmmreg1 using imm C4: rxb0_3: w_F 001:17:11 xmmreg1 reg: imm

 mem from xmmreg1 using imm C4: rxb0_3: w_F 001:17:mod xmmreg1 r/m: imm

VINSERTPS — Insert Into Packed Single Precision Floats

 use imm to merge xmmreg3 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:21:11 xmmreg1 xmmreg3: imm

 use imm to merge mem with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:21:mod xmmreg1 r/m: imm

VMOVNTDQA — Load Double Quadword Non-temporal Aligned

 m128 to xmmreg1 C4: rxb0_2: w_F 001:2A:11 xmmreg1 r/m

B-72 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

VMPSADBW — Multiple Packed Sums of Absolute Difference

 xmmreg3 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 xmmreg3: imm

 m128 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:42:mod xmmreg1 r/m: imm

VPACKUSDW — Pack with Unsigned Saturation

 xmmreg3 and xmmreg2 to xmmreg1 C4: rxb0_2: w xmmreg2 001:2B:11 xmmreg1 xmmreg3: imm

 m128 and xmmreg2 to xmmreg1 C4: rxb0_2: w xmmreg2 001:2B:mod xmmreg1 r/m: imm

VPBLENDVB — Variable Blend Packed Bytes

 xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as
mask

C4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 xmmreg3: xmmreg4

 xmmreg2 with mem to xmmreg1 using xmmreg4 as mask C4: rxb0_3: w xmmreg2 001:4C:mod xmmreg1 r/m: xmmreg4

VPBLENDW — Blend Packed Words

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3: imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:mod xmmreg1 r/m: imm

VPCMPEQQ — Compare Packed Qword Data of Equal

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:29:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:29:mod xmmreg1 r/m:

VPEXTRB — Extract Byte

 reg from xmmreg1 using imm C4: rxb0_3: 0_F 001:14:11 xmmreg1 reg: imm

 mem from xmmreg1 using imm C4: rxb0_3: 0_F 001:14:mod xmmreg1 r/m: imm

VPEXTRD — Extract DWord

 reg from xmmreg1 using imm C4: rxb0_3: 0_F 001:16:11 xmmreg1 reg: imm

 mem from xmmreg1 using imm C4: rxb0_3: 0_F 001:16:mod xmmreg1 r/m: imm

VPEXTRQ — Extract QWord

 reg from xmmreg1 using imm C4: rxb0_3: 1_F 001:16:11 xmmreg1 reg: imm

 mem from xmmreg1 using imm C4: rxb0_3: 1_F 001:16:mod xmmreg1 r/m: imm

VPEXTRW — Extract Word

 reg from xmmreg1 using imm C4: rxb0_3: 0_F 001:15:11 xmmreg1 reg: imm

 mem from xmmreg1 using imm C4: rxb0_3: 0_F 001:15:mod xmmreg1 r/m: imm

VPHMINPOSUW — Packed Horizontal Word Minimum

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:41:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:41:mod xmmreg1 r/m

VPINSRB — Insert Byte

 reg with xmmreg2 to xmmreg1, imm8 C4: rxb0_3: 0 xmmreg2 001:20:11 xmmreg1 reg: imm

 mem with xmmreg2 to xmmreg1, imm8 C4: rxb0_3: 0 xmmreg2 001:20:mod xmmreg1 r/m: imm

VPINSRD — Insert DWord

 reg with xmmreg2 to xmmreg1, imm8 C4: rxb0_3: 0 xmmreg2 001:22:11 xmmreg1 reg: imm

 mem with xmmreg2 to xmmreg1, imm8 C4: rxb0_3: 0 xmmreg2 001:22:mod xmmreg1 r/m: imm

VPINSRQ — Insert QWord

 r64 with xmmreg2 to xmmreg1, imm8 C4: rxb0_3: 1 xmmreg2 001:22:11 xmmreg1 reg: imm

Instruction and Format Encoding

Vol. 2D B-73

INSTRUCTION FORMATS AND ENCODINGS

 m64 with xmmreg2 to xmmreg1, imm8 C4: rxb0_3: 1 xmmreg2 001:22:mod xmmreg1 r/m: imm

VPMAXSB — Maximum of Packed Signed Byte Integers

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:3C:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3C:mod xmmreg1 r/m

VPMAXSD — Maximum of Packed Signed Dword Integers

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:3D:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3D:mod xmmreg1 r/m

VPMAXUD — Maximum of Packed Unsigned Dword Integers

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:3F:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3F:mod xmmreg1 r/m

VPMAXUW — Maximum of Packed Unsigned Word Integers

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:3E:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3E:mod xmmreg1 r/m

VPMINSB — Minimum of Packed Signed Byte Integers

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:38:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:38:mod xmmreg1 r/m

VPMINSD — Minimum of Packed Signed Dword Integers

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:39:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:39:mod xmmreg1 r/m

VPMINUD — Minimum of Packed Unsigned Dword Integers

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:3B:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3B:mod xmmreg1 r/m

VPMINUW — Minimum of Packed Unsigned Word Integers

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:3A:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3A:mod xmmreg1 r/m

VPMOVSXBD — Packed Move Sign Extend - Byte to Dword

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:21:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:21:mod xmmreg1 r/m

VPMOVSXBQ — Packed Move Sign Extend - Byte to Qword

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:22:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:22:mod xmmreg1 r/m

VPMOVSXBW — Packed Move Sign Extend - Byte to Word

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:20:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:20:mod xmmreg1 r/m

VPMOVSXWD — Packed Move Sign Extend - Word to Dword

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:23:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:23:mod xmmreg1 r/m

VPMOVSXWQ — Packed Move Sign Extend - Word to Qword

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:24:11 xmmreg1 xmmreg2

Instruction and Format Encoding

B-74 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

 mem to xmmreg1 C4: rxb0_2: w_F 001:24:mod xmmreg1 r/m

VPMOVSXDQ — Packed Move Sign Extend - Dword to Qword

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:25:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:25:mod xmmreg1 r/m

VPMOVZXBD — Packed Move Zero Extend - Byte to Dword

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:31:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:31:mod xmmreg1 r/m

VPMOVZXBQ — Packed Move Zero Extend - Byte to Qword

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:32:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:32:mod xmmreg1 r/m

VPMOVZXBW — Packed Move Zero Extend - Byte to Word

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:30:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:30:mod xmmreg1 r/m

VPMOVZXWD — Packed Move Zero Extend - Word to Dword

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:33:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:33:mod xmmreg1 r/m

VPMOVZXWQ — Packed Move Zero Extend - Word to Qword

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:34:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:34:mod xmmreg1 r/m

VPMOVZXDQ — Packed Move Zero Extend - Dword to Qword

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:35:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:35:mod xmmreg1 r/m

VPMULDQ — Multiply Packed Signed Dword Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:28:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:28:mod xmmreg1 r/m

VPMULLD — Multiply Packed Signed Dword Integers, Store low Result

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:40:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:40:mod xmmreg1 r/m

VPTEST — Logical Compare

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:17:11 xmmreg1 xmmreg2

 mem to xmmreg C4: rxb0_2: w_F 001:17:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_2: w_F 101:17:11 ymmreg1 ymmreg2

 mem to ymmreg C4: rxb0_2: w_F 101:17:mod ymmreg1 r/m

VROUNDPD — Round Packed Double Precision Values

 xmmreg2 to xmmreg1, imm8 C4: rxb0_3: w_F 001:09:11 xmmreg1 xmmreg2: imm

 mem to xmmreg1, imm8 C4: rxb0_3: w_F 001:09:mod xmmreg1 r/m: imm

 ymmreg2 to ymmreg1, imm8 C4: rxb0_3: w_F 101:09:11 ymmreg1 ymmreg2: imm

 mem to ymmreg1, imm8 C4: rxb0_3: w_F 101:09:mod ymmreg1 r/m: imm

VROUNDPS — Round Packed Single Precision Values

Instruction and Format Encoding

Vol. 2D B-75

INSTRUCTION FORMATS AND ENCODINGS

 xmmreg2 to xmmreg1, imm8 C4: rxb0_3: w_F 001:08:11 xmmreg1 xmmreg2: imm

 mem to xmmreg1, imm8 C4: rxb0_3: w_F 001:08:mod xmmreg1 r/m: imm

 ymmreg2 to ymmreg1, imm8 C4: rxb0_3: w_F 101:08:11 ymmreg1 ymmreg2: imm

 mem to ymmreg1, imm8 C4: rxb0_3: w_F 101:08:mod ymmreg1 r/m: imm

VROUNDSD — Round Scalar Double Precision Value

 xmmreg2 and xmmreg3 to xmmreg1, imm8 C4: rxb0_3: w xmmreg2 001:0B:11 xmmreg1 xmmreg3: imm

 xmmreg2 and mem to xmmreg1, imm8 C4: rxb0_3: w xmmreg2 001:0B:mod xmmreg1 r/m: imm

VROUNDSS — Round Scalar Single Precision Value

 xmmreg2 and xmmreg3 to xmmreg1, imm8 C4: rxb0_3: w xmmreg2 001:0A:11 xmmreg1 xmmreg3: imm

 xmmreg2 and mem to xmmreg1, imm8 C4: rxb0_3: w xmmreg2 001:0A:mod xmmreg1 r/m: imm

VPCMPESTRI — Packed Compare Explicit Length Strings, Return Index

 xmmreg2 with xmmreg1, imm8 C4: rxb0_3: w_F 001:61:11 xmmreg1 xmmreg2: imm

 mem with xmmreg1, imm8 C4: rxb0_3: w_F 001:61:mod xmmreg1 r/m: imm

VPCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

 xmmreg2 with xmmreg1, imm8 C4: rxb0_3: w_F 001:60:11 xmmreg1 xmmreg2: imm

 mem with xmmreg1, imm8 C4: rxb0_3: w_F 001:60:mod xmmreg1 r/m: imm

VPCMPGTQ — Compare Packed Data for Greater Than

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:28:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:28:mod xmmreg1 r/m

VPCMPISTRI — Packed Compare Implicit Length Strings, Return Index

 xmmreg2 with xmmreg1, imm8 C4: rxb0_3: w_F 001:63:11 xmmreg1 xmmreg2: imm

 mem with xmmreg1, imm8 C4: rxb0_3: w_F 001:63:mod xmmreg1 r/m: imm

VPCMPISTRM — Packed Compare Implicit Length Strings, Return Mask

 xmmreg2 with xmmreg1, imm8 C4: rxb0_3: w_F 001:62:11 xmmreg1 xmmreg2: imm

 mem with xmmreg, imm8 C4: rxb0_3: w_F 001:62:mod xmmreg1 r/m: imm

VAESDEC — Perform One Round of an AES Decryption Flow

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:DE:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:DE:mod xmmreg1 r/m

VAESDECLAST — Perform Last Round of an AES Decryption Flow

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:DF:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:DF:mod xmmreg1 r/m

VAESENC — Perform One Round of an AES Encryption Flow

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:DC:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:DC:mod xmmreg1 r/m

VAESENCLAST — Perform Last Round of an AES Encryption Flow

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:DD:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:DD:mod xmmreg1 r/m

VAESIMC — Perform the AES InvMixColumn Transformation

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:DB:11 xmmreg1 xmmreg2

Instruction and Format Encoding

B-76 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

 mem to xmmreg1 C4: rxb0_2: w_F 001:DB:mod xmmreg1 r/m

VAESKEYGENASSIST — AES Round Key Generation Assist

 xmmreg2 to xmmreg1, imm8 C4: rxb0_3: w_F 001:DF:11 xmmreg1 xmmreg2: imm

 mem to xmmreg, imm8 C4: rxb0_3: w_F 001:DF:mod xmmreg1 r/m: imm

VPABSB — Packed Absolute Value

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:1C:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:1C:mod xmmreg1 r/m

VPABSD — Packed Absolute Value

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:1E:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:1E:mod xmmreg1 r/m

VPABSW — Packed Absolute Value

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:1D:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:1D:mod xmmreg1 r/m

VPALIGNR — Packed Align Right

 xmmreg2 with xmmreg3 to xmmreg1, imm8 C4: rxb0_3: w xmmreg2 001:DD:11 xmmreg1 xmmreg3: imm

 xmmreg2 with mem to xmmreg1, imm8 C4: rxb0_3: w xmmreg2 001:DD:mod xmmreg1 r/m: imm

VPHADDD — Packed Horizontal Add

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:02:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:02:mod xmmreg1 r/m

VPHADDW — Packed Horizontal Add

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:01:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:01:mod xmmreg1 r/m

VPHADDSW — Packed Horizontal Add and Saturate

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:03:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:03:mod xmmreg1 r/m

VPHSUBD — Packed Horizontal Subtract

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:06:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:06:mod xmmreg1 r/m

VPHSUBW — Packed Horizontal Subtract

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:05:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:05:mod xmmreg1 r/m

VPHSUBSW — Packed Horizontal Subtract and Saturate

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:07:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:07:mod xmmreg1 r/m

VPMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:04:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:04:mod xmmreg1 r/m

VPMULHRSW — Packed Multiply High with Round and Scale

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:0B:11 xmmreg1 xmmreg3

Instruction and Format Encoding

Vol. 2D B-77

INSTRUCTION FORMATS AND ENCODINGS

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:0B:mod xmmreg1 r/m

VPSHUFB — Packed Shuffle Bytes

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:00:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:00:mod xmmreg1 r/m

VPSIGNB — Packed SIGN

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:08:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:08:mod xmmreg1 r/m

VPSIGND — Packed SIGN

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:0A:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:0A:mod xmmreg1 r/m

VPSIGNW — Packed SIGN

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:09:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:09:mod xmmreg1 r/m

VADDSUBPD — Packed Double-FP Add/Subtract

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D0:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D0:mod xmmreg1 r/m

 xmmreglo21 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:D0:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D0:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:D0:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:D0:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:D0:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:D0:mod ymmreg1 r/m

VADDSUBPS — Packed Single-FP Add/Subtract

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:D0:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:D0:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:D0:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:D0:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 111:D0:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 111:D0:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 111:D0:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 111:D0:mod ymmreg1 r/m

VHADDPD — Packed Double-FP Horizontal Add

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:7C:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:7C:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:7C:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:7C:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:7C:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:7C:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:7C:11 ymmreg1 ymmreglo3

Instruction and Format Encoding

B-78 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:7C:mod ymmreg1 r/m

VHADDPS — Packed Single-FP Horizontal Add

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:7C:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:7C:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 111:7C:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 111:7C:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 111:7C:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 111:7C:mod ymmreg1 r/m

VHSUBPD — Packed Double-FP Horizontal Subtract

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:7D:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:7D:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:7D:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:7D:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:7D:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:7D:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:7D:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:7D:mod ymmreg1 r/m

VHSUBPS — Packed Single-FP Horizontal Subtract

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:7D:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:7D:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:7D:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:7D:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 111:7D:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 111:7D:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 111:7D:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 111:7D:mod ymmreg1 r/m

VLDDQU — Load Unaligned Integer 128 Bits

 mem to xmmreg1 C4: rxb0_1: w_F 011:F0:mod xmmreg1 r/m

 mem to xmmreg1 C5: r_F 011:F0:mod xmmreg1 r/m

 mem to ymmreg1 C4: rxb0_1: w_F 111:F0:mod ymmreg1 r/m

 mem to ymmreg1 C5: r_F 111:F0:mod ymmreg1 r/m

VMOVDDUP — Move One Double-FP and Duplicate

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 011:12:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 011:12:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 011:12:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 011:12:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 111:12:11 ymmreg1 ymmreg2

Instruction and Format Encoding

Vol. 2D B-79

INSTRUCTION FORMATS AND ENCODINGS

 mem to ymmreg1 C4: rxb0_1: w_F 111:12:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_ F 111:12:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 111:12:mod ymmreg1 r/m

VMOVHLPS — Move Packed Single Precision Floating-Point Values High to Low

 xmmreg2 and xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:12:11 xmmreg1 xmmreg3

 xmmreglo2 and xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:12:11 xmmreg1 xmmreglo3

VMOVSHDUP — Move Packed Single-FP High and Duplicate

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 010:16:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 010:16:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 010:16:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 010:16:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 110:16:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 110:16:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 110:16:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 110:16:mod ymmreg1 r/m

VMOVSLDUP — Move Packed Single-FP Low and Duplicate

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 010:12:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 010:12:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 010:12:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 010:12:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 110:12:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 110:12:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 110:12:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 110:12:mod ymmreg1 r/m

VADDPD — Add Packed Double Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:58:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:58:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:58:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:58:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:58:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:58:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:58:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:58:mod ymmreg1 r/m

VADDSD — Add Scalar Double Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:58:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:58:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:58:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5 r_xmmreglo2 011:58:mod xmmreg1 r/m

VANDPD — Bitwise Logical AND of Packed Double Precision Floating-Point Values

Instruction and Format Encoding

B-80 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:54:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:54:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:54:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:54:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:54:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:54:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:54:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:54:mod ymmreg1 r/m

VANDNPD — Bitwise Logical AND NOT of Packed Double Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:55:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:55:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:55:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:55:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:55:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:55:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:55:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:55:mod ymmreg1 r/m

VCMPPD — Compare Packed Double Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:C2:11 xmmreg1 xmmreg3: imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:C2:mod xmmreg1 r/m: imm

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:C2:11 xmmreg1 xmmreglo3: imm

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:C2:mod xmmreg1 r/m: imm

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:C2:11 ymmreg1 ymmreg3: imm

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:C2:mod ymmreg1 r/m: imm

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:C2:11 ymmreg1 ymmreglo3: imm

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:C2:mod ymmreg1 r/m: imm

VCMPSD — Compare Scalar Double Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:C2:11 xmmreg1 xmmreg3: imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:C2:mod xmmreg1 r/m: imm

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:C2:11 xmmreg1 xmmreglo3: imm

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:C2:mod xmmreg1 r/m: imm

VCOMISD — Compare Scalar Ordered Double Precision Floating-Point Values and Set EFLAGS

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:2F:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 001:2F:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 001:2F:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 001:2F:mod xmmreg1 r/m

VCVTDQ2PD— Convert Packed Dword Integers to Packed Double Precision FP Values

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 010:E6:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 010:E6:mod xmmreg1 r/m

Instruction and Format Encoding

Vol. 2D B-81

INSTRUCTION FORMATS AND ENCODINGS

 xmmreglo to xmmreg1 C5: r_F 010:E6:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 010:E6:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 110:E6:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 110:E6:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 110:E6:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 110:E6:mod ymmreg1 r/m

VCVTDQ2PS— Convert Packed Dword Integers to Packed Single Precision FP Values

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:5B:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 000:5B:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 000:5B:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 000:5B:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:5B:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 100:5B:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 100:5B:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 100:5B:mod ymmreg1 r/m

VCVTPD2DQ— Convert Packed Double Precision FP Values to Packed Dword Integers

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 011:E6:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 011:E6:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 011:E6:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 011:E6:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 111:E6:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 111:E6:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 111:E6:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 111:E6:mod ymmreg1 r/m

VCVTPD2PS— Convert Packed Double Precision FP Values to Packed Single Precision FP Values

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:5A:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 001:5A:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 001:5A:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 001:5A:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:5A:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 101:5A:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 101:5A:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 101:5A:mod ymmreg1 r/m

VCVTPS2DQ— Convert Packed Single Precision FP Values to Packed Dword Integers

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:5B:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 001:5B:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 001:5B:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 001:5B:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:5B:11 ymmreg1 ymmreg2

Instruction and Format Encoding

B-82 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

 mem to ymmreg1 C4: rxb0_1: w_F 101:5B:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 101:5B:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 101:5B:mod ymmreg1 r/m

VCVTPS2PD— Convert Packed Single Precision FP Values to Packed Double Precision FP Values

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:5A:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 000:5A:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 000:5A:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 000:5A:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:5A:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 100:5A:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 100:5A:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 100:5A:mod ymmreg1 r/m

VCVTSD2SI— Convert Scalar Double Precision FP Value to Signed Integer

 xmmreg1 to reg32 C4: rxb0_1: 0_F 011:2D:11 reg xmmreg1

 mem to reg32 C4: rxb0_1: 0_F 011:2D:mod reg r/m

 xmmreglo to reg32 C5: r_F 011:2D:11 reg xmmreglo

 mem to reg32 C5: r_F 011:2D:mod reg r/m

 ymmreg1 to reg64 C4: rxb0_1: 1_F 111:2D:11 reg ymmreg1

 mem to reg64 C4: rxb0_1: 1_F 111:2D:mod reg r/m

VCVTSD2SS — Convert Scalar Double Precision FP Value to Scalar Single Precision FP Value

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:5A:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:5A:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:5A:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:5A:mod xmmreg1 r/m

VCVTSI2SD— Convert Signed Integer to Scalar Double Precision FP Value

 xmmreg2 with reg to xmmreg1 C4: rxb0_1: 0 xmmreg2 011:2A:11 xmmreg1 reg

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: 0 xmmreg2 011:2A:mod xmmreg1 r/m

 xmmreglo2 with reglo to xmmreg1 C5: r_xmmreglo2 011:2A:11 xmmreg1 reglo

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:2A:mod xmmreg1 r/m

 ymmreg2 with reg to ymmreg1 C4: rxb0_1: 1 ymmreg2 111:2A:11 ymmreg1 reg

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: 1 ymmreg2 111:2A:mod ymmreg1 r/m

VCVTSS2SD — Convert Scalar Single Precision FP Value to Scalar Double Precision FP Value

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5A:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:5A:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:5A:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5A:mod xmmreg1 r/m

VCVTTPD2DQ— Convert with Truncation Packed Double Precision FP Values to Packed Dword Integers

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:E6:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 001:E6:mod xmmreg1 r/m

Instruction and Format Encoding

Vol. 2D B-83

INSTRUCTION FORMATS AND ENCODINGS

 xmmreglo to xmmreg1 C5: r_F 001:E6:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 001:E6:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:E6:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 101:E6:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 101:E6:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 101:E6:mod ymmreg1 r/m

VCVTTPS2DQ— Convert with Truncation Packed Single Precision FP Values to Packed Dword Integers

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 010:5B:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 010:5B:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 010:5B:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 010:5B:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 110:5B:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 110:5B:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 110:5B:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 110:5B:mod ymmreg1 r/m

VCVTTSD2SI— Convert with Truncation Scalar Double Precision FP Value to Signed Integer

 xmmreg1 to reg32 C4: rxb0_1: 0_F 011:2C:11 reg xmmreg1

 mem to reg32 C4: rxb0_1: 0_F 011:2C:mod reg r/m

 xmmreglo to reg32 C5: r_F 011:2C:11 reg xmmreglo

 mem to reg32 C5: r_F 011:2C:mod reg r/m

 xmmreg1 to reg64 C4: rxb0_1: 1_F 011:2C:11 reg xmmreg1

 mem to reg64 C4: rxb0_1: 1_F 011:2C:mod reg r/m

VDIVPD — Divide Packed Double Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:5E:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:5E:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:5E:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:5E:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:5E:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:5E:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:5E:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:5E:mod ymmreg1 r/m

VDIVSD — Divide Scalar Double Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:5E:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:5E:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:5E:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:5E:mod xmmreg1 r/m

VMASKMOVDQU— Store Selected Bytes of Double Quadword

 xmmreg1 to mem; xmmreg2 as mask C4: rxb0_1: w_F 001:F7:11 r/m xmmreg1: xmmreg2

 xmmreg1 to mem; xmmreg2 as mask C5: r_F 001:F7:11 r/m xmmreg1: xmmreg2

Instruction and Format Encoding

B-84 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

VMAXPD — Return Maximum Packed Double Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:5F:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:5F:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:5F:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:5F:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:5F:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:5F:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:5F:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:5F:mod ymmreg1 r/m

VMAXSD — Return Maximum Scalar Double Precision Floating-Point Value

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:5F:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:5F:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:5F:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:5F:mod xmmreg1 r/m

VMINPD — Return Minimum Packed Double Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:5D:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:5D:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:5D:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:5D:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:5D:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:5D:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:5D:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:5D:mod ymmreg1 r/m

VMINSD — Return Minimum Scalar Double Precision Floating-Point Value

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:5D:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:5D:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:5D:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:5D:mod xmmreg1 r/m

VMOVAPD — Move Aligned Packed Double Precision Floating-Point Values

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:28:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 001:28:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 001:28:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 001:28:mod xmmreg1 r/m

 xmmreg1 to xmmreg2 C4: rxb0_1: w_F 001:29:11 xmmreg2 xmmreg1

 xmmreg1 to mem C4: rxb0_1: w_F 001:29:mod r/m xmmreg1

 xmmreg1 to xmmreglo C5: r_F 001:29:11 xmmreglo xmmreg1

 xmmreg1 to mem C5: r_F 001:29:mod r/m xmmreg1

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:28:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 101:28:mod ymmreg1 r/m

Instruction and Format Encoding

Vol. 2D B-85

INSTRUCTION FORMATS AND ENCODINGS

 ymmreglo to ymmreg1 C5: r_F 101:28:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 101:28:mod ymmreg1 r/m

 ymmreg1 to ymmreg2 C4: rxb0_1: w_F 101:29:11 ymmreg2 ymmreg1

 ymmreg1 to mem C4: rxb0_1: w_F 101:29:mod r/m ymmreg1

 ymmreg1 to ymmreglo C5: r_F 101:29:11 ymmreglo ymmreg1

 ymmreg1 to mem C5: r_F 101:29:mod r/m ymmreg1

VMOVD — Move Doubleword

 reg32 to xmmreg1 C4: rxb0_1: 0_F 001:6E:11 xmmreg1 reg32

 mem32 to xmmreg1 C4: rxb0_1: 0_F 001:6E:mod xmmreg1 r/m

 reg32 to xmmreg1 C5: r_F 001:6E:11 xmmreg1 reg32

 mem32 to xmmreg1 C5: r_F 001:6E:mod xmmreg1 r/m

 xmmreg1 to reg32 C4: rxb0_1: 0_F 001:7E:11 reg32 xmmreg1

 xmmreg1 to mem32 C4: rxb0_1: 0_F 001:7E:mod mem32 xmmreg1

 xmmreglo to reg32 C5: r_F 001:7E:11 reg32 xmmreglo

 xmmreglo to mem32 C5: r_F 001:7E:mod mem32 xmmreglo

VMOVQ — Move Quadword

 reg64 to xmmreg1 C4: rxb0_1: 1_F 001:6E:11 xmmreg1 reg64

 mem64 to xmmreg1 C4: rxb0_1: 1_F 001:6E:mod xmmreg1 r/m

 xmmreg1 to reg64 C4: rxb0_1: 1_F 001:7E:11 reg64 xmmreg1

 xmmreg1 to mem64 C4: rxb0_1: 1_F 001:7E:mod r/m xmmreg1

VMOVDQA — Move Aligned Double Quadword

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:6F:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 001:6F:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 001:6F:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 001:6F:mod xmmreg1 r/m

 xmmreg1 to xmmreg2 C4: rxb0_1: w_F 001:7F:11 xmmreg2 xmmreg1

 xmmreg1 to mem C4: rxb0_1: w_F 001:7F:mod r/m xmmreg1

 xmmreg1 to xmmreglo C5: r_F 001:7F:11 xmmreglo xmmreg1

 xmmreg1 to mem C5: r_F 001:7F:mod r/m xmmreg1

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:6F:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 101:6F:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 101:6F:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 101:6F:mod ymmreg1 r/m

 ymmreg1 to ymmreg2 C4: rxb0_1: w_F 101:7F:11 ymmreg2 ymmreg1

 ymmreg1 to mem C4: rxb0_1: w_F 101:7F:mod r/m ymmreg1

 ymmreg1 to ymmreglo C5: r_F 101:7F:11 ymmreglo ymmreg1

 ymmreg1 to mem C5: r_F 101:7F:mod r/m ymmreg1

VMOVDQU — Move Unaligned Double Quadword

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 010:6F:11 xmmreg1 xmmreg2

Instruction and Format Encoding

B-86 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

 mem to xmmreg1 C4: rxb0_1: w_F 010:6F:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 010:6F:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 010:6F:mod xmmreg1 r/m

 xmmreg1 to xmmreg2 C4: rxb0_1: w_F 010:7F:11 xmmreg2 xmmreg1

 xmmreg1 to mem C4: rxb0_1: w_F 010:7F:mod r/m xmmreg1

 xmmreg1 to xmmreglo C5: r_F 010:7F:11 xmmreglo xmmreg1

 xmmreg1 to mem C5: r_F 010:7F:mod r/m xmmreg1

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 110:6F:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 110:6F:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 110:6F:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 110:6F:mod ymmreg1 r/m

 ymmreg1 to ymmreg2 C4: rxb0_1: w_F 110:7F:11 ymmreg2 ymmreg1

 ymmreg1 to mem C4: rxb0_1: w_F 110:7F:mod r/m ymmreg1

 ymmreg1 to ymmreglo C5: r_F 110:7F:11 ymmreglo ymmreg1

 ymmreg1 to mem C5: r_F 110:7F:mod r/m ymmreg1

VMOVHPD — Move High Packed Double Precision Floating-Point Value

 xmmreg1 and mem to xmmreg2 C4: rxb0_1: w xmmreg1 001:16:11 xmmreg2 r/m

 xmmreg1 and mem to xmmreglo2 C5: r_xmmreg1 001:16:11 xmmreglo2 r/m

 xmmreg1 to mem C4: rxb0_1: w_F 001:17:mod r/m xmmreg1

 xmmreglo to mem C5: r_F 001:17:mod r/m xmmreglo

VMOVLPD — Move Low Packed Double Precision Floating-Point Value

 xmmreg1 and mem to xmmreg2 C4: rxb0_1: w xmmreg1 001:12:11 xmmreg2 r/m

 xmmreg1 and mem to xmmreglo2 C5: r_xmmreg1 001:12:11 xmmreglo2 r/m

 xmmreg1 to mem C4: rxb0_1: w_F 001:13:mod r/m xmmreg1

 xmmreglo to mem C5: r_F 001:13:mod r/m xmmreglo

VMOVMSKPD — Extract Packed Double Precision Floating-Point Sign Mask

 xmmreg2 to reg C4: rxb0_1: w_F 001:50:11 reg xmmreg1

 xmmreglo to reg C5: r_F 001:50:11 reg xmmreglo

 ymmreg2 to reg C4: rxb0_1: w_F 101:50:11 reg ymmreg1

 ymmreglo to reg C5: r_F 101:50:11 reg ymmreglo

VMOVNTDQ — Store Double Quadword Using Non-Temporal Hint

 xmmreg1 to mem C4: rxb0_1: w_F 001:E7:11 r/m xmmreg1

 xmmreglo to mem C5: r_F 001:E7:11 r/m xmmreglo

 ymmreg1 to mem C4: rxb0_1: w_F 101:E7:11 r/m ymmreg1

 ymmreglo to mem C5: r_F 101:E7:11 r/m ymmreglo

VMOVNTPD — Store Packed Double Precision Floating-Point Values Using Non-Temporal Hint

 xmmreg1 to mem C4: rxb0_1: w_F 001:2B:11 r/m xmmreg1

 xmmreglo to mem C5: r_F 001:2B:11 r/m xmmreglo

 ymmreg1 to mem C4: rxb0_1: w_F 101:2B:11r/m ymmreg1

Instruction and Format Encoding

Vol. 2D B-87

INSTRUCTION FORMATS AND ENCODINGS

 ymmreglo to mem C5: r_F 101:2B:11r/m ymmreglo

VMOVSD — Move Scalar Double Precision Floating-Point Value

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:10:11 xmmreg1 xmmreg3

 mem to xmmreg1 C4: rxb0_1: w_F 011:10:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:10:11 xmmreg1 xmmreglo3

 mem to xmmreg1 C5: r_F 011:10:mod xmmreg1 r/m

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:11:11 xmmreg1 xmmreg3

 xmmreg1 to mem C4: rxb0_1: w_F 011:11:mod r/m xmmreg1

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:11:11 xmmreg1 xmmreglo3

 xmmreglo to mem C5: r_F 011:11:mod r/m xmmreglo

VMOVUPD — Move Unaligned Packed Double Precision Floating-Point Values

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:10:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 001:10:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 001:10:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 001:10:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:10:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 101:10:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 101:10:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 101:10:mod ymmreg1 r/m

 xmmreg1 to xmmreg2 C4: rxb0_1: w_F 001:11:11 xmmreg2 xmmreg1

 xmmreg1 to mem C4: rxb0_1: w_F 001:11:mod r/m xmmreg1

 xmmreg1 to xmmreglo C5: r_F 001:11:11 xmmreglo xmmreg1

 xmmreg1 to mem C5: r_F 001:11:mod r/m xmmreg1

 ymmreg1 to ymmreg2 C4: rxb0_1: w_F 101:11:11 ymmreg2 ymmreg1

 ymmreg1 to mem C4: rxb0_1: w_F 101:11:mod r/m ymmreg1

 ymmreg1 to ymmreglo C5: r_F 101:11:11 ymmreglo ymmreg1

 ymmreg1 to mem C5: r_F 101:11:mod r/m ymmreg1

VMULPD — Multiply Packed Double Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:59:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:59:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:59:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:59:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:59:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:59:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:59:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:59:mod ymmreg1 r/m

VMULSD — Multiply Scalar Double Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:59:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:59:mod xmmreg1 r/m

Instruction and Format Encoding

B-88 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:59:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:59:mod xmmreg1 r/m

VORPD — Bitwise Logical OR of Double Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:56:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:56:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:56:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:56:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:56:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:56:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:56:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:56:mod ymmreg1 r/m

VPACKSSWB— Pack with Signed Saturation

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:63:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:63:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:63:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:63:mod xmmreg1 r/m

VPACKSSDW— Pack with Signed Saturation

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6B:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:6B:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:6B:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6B:mod xmmreg1 r/m

VPACKUSWB— Pack with Unsigned Saturation

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:67:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:67:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:67:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:67:mod xmmreg1 r/m

VPADDB — Add Packed Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:FC:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:FC:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:FC:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:FC:mod xmmreg1 r/m

VPADDW — Add Packed Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:FD:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:FD:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:FD:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:FD:mod xmmreg1 r/m

VPADDD — Add Packed Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:FE:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:FE:mod xmmreg1 r/m

Instruction and Format Encoding

Vol. 2D B-89

INSTRUCTION FORMATS AND ENCODINGS

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:FE:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:FE:mod xmmreg1 r/m

VPADDQ — Add Packed Quadword Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D4:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D4:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:D4:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D4:mod xmmreg1 r/m

VPADDSB — Add Packed Signed Integers with Signed Saturation

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EC:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EC:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:EC:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EC:mod xmmreg1 r/m

VPADDSW — Add Packed Signed Integers with Signed Saturation

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:ED:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:ED:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:ED:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:ED:mod xmmreg1 r/m

VPADDUSB — Add Packed Unsigned Integers with Unsigned Saturation

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DC:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DC:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:DC:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DC:mod xmmreg1 r/m

VPADDUSW — Add Packed Unsigned Integers with Unsigned Saturation

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DD:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DD:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:DD:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DD:mod xmmreg1 r/m

VPAND — Logical AND

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DB:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DB:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:DB:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DB:mod xmmreg1 r/m

VPANDN — Logical AND NOT

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DF:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DF:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:DF:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DF:mod xmmreg1 r/m

VPAVGB — Average Packed Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E0:11 xmmreg1 xmmreg3

Instruction and Format Encoding

B-90 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E0:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:E0:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E0:mod xmmreg1 r/m

VPAVGW — Average Packed Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E3:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E3:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:E3:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E3:mod xmmreg1 r/m

VPCMPEQB — Compare Packed Data for Equal

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:74:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:74:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:74:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:74:mod xmmreg1 r/m

VPCMPEQW — Compare Packed Data for Equal

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:75:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:75:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:75:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:75:mod xmmreg1 r/m

VPCMPEQD — Compare Packed Data for Equal

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:76:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:76:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:76:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:76:mod xmmreg1 r/m

VPCMPGTB — Compare Packed Signed Integers for Greater Than

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:64:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:64:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:64:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:64:mod xmmreg1 r/m

VPCMPGTW — Compare Packed Signed Integers for Greater Than

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:65:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:65:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:65:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:65:mod xmmreg1 r/m

VPCMPGTD — Compare Packed Signed Integers for Greater Than

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:66:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:66:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:66:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:66:mod xmmreg1 r/m

VPEXTRW — Extract Word

Instruction and Format Encoding

Vol. 2D B-91

INSTRUCTION FORMATS AND ENCODINGS

 xmmreg1 to reg using imm C4: rxb0_1: 0_F 001:C5:11 reg xmmreg1: imm

 xmmreg1 to reg using imm C5: r_F 001:C5:11 reg xmmreg1: imm

VPINSRW — Insert Word

 xmmreg2 with reg to xmmreg1 C4: rxb0_1: 0 xmmreg2 001:C4:11 xmmreg1 reg: imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: 0 xmmreg2 001:C4:mod xmmreg1 r/m: imm

 xmmreglo2 with reglo to xmmreg1 C5: r_xmmreglo2 001:C4:11 xmmreg1 reglo: imm

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:C4:mod xmmreg1 r/m: imm

VPMADDWD — Multiply and Add Packed Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F5:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F5:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F5:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F5:mod xmmreg1 r/m

VPMAXSW — Maximum of Packed Signed Word Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EE:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EE:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:EE:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EE:mod xmmreg1 r/m

VPMAXUB — Maximum of Packed Unsigned Byte Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DE:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DE:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:DE:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DE:mod xmmreg1 r/m

VPMINSW — Minimum of Packed Signed Word Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EA:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EA:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:EA:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EA:mod xmmreg1 r/m

VPMINUB — Minimum of Packed Unsigned Byte Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DA:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DA:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:DA:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DA:mod xmmreg1 r/m

VPMOVMSKB — Move Byte Mask

 xmmreg1 to reg C4: rxb0_1: w_F 001:D7:11 reg xmmreg1

 xmmreg1 to reg C5: r_F 001:D7:11 reg xmmreg1

VPMULHUW — Multiply Packed Unsigned Integers and Store High Result

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E4:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E4:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:E4:11 xmmreg1 xmmreglo3

Instruction and Format Encoding

B-92 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E4:mod xmmreg1 r/m

VPMULHW — Multiply Packed Signed Integers and Store High Result

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E5:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E5:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:E5:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E5:mod xmmreg1 r/m

VPMULLW — Multiply Packed Signed Integers and Store Low Result

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D5:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D5:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:D5:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D5:mod xmmreg1 r/m

VPMULUDQ — Multiply Packed Unsigned Doubleword Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F4:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F4:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F4:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F4:mod xmmreg1 r/m

VPOR — Bitwise Logical OR

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EB:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EB:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:EB:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EB:mod xmmreg1 r/m

VPSADBW — Compute Sum of Absolute Differences

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F6:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F6:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F6:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F6:mod xmmreg1 r/m

VPSHUFD — Shuffle Packed Doublewords

 xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:70:11 xmmreg1 xmmreg2: imm

 mem to xmmreg1 using imm C4: rxb0_1: w_F 001:70:mod xmmreg1 r/m: imm

 xmmreglo to xmmreg1 using imm C5: r_F 001:70:11 xmmreg1 xmmreglo: imm

 mem to xmmreg1 using imm C5: r_F 001:70:mod xmmreg1 r/m: imm

VPSHUFHW — Shuffle Packed High Words

 xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 010:70:11 xmmreg1 xmmreg2: imm

 mem to xmmreg1 using imm C4: rxb0_1: w_F 010:70:mod xmmreg1 r/m: imm

 xmmreglo to xmmreg1 using imm C5: r_F 010:70:11 xmmreg1 xmmreglo: imm

 mem to xmmreg1 using imm C5: r_F 010:70:mod xmmreg1 r/m: imm

VPSHUFLW — Shuffle Packed Low Words

 xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm

 mem to xmmreg1 using imm C4: rxb0_1: w_F 011:70:mod xmmreg1 r/m: imm

Instruction and Format Encoding

Vol. 2D B-93

INSTRUCTION FORMATS AND ENCODINGS

 xmmreglo to xmmreg1 using imm C5: r_F 011:70:11 xmmreg1 xmmreglo: imm

 mem to xmmreg1 using imm C5: r_F 011:70:mod xmmreg1 r/m: imm

VPSLLDQ — Shift Double Quadword Left Logical

 xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm

 xmmreglo to xmmreg1 using imm C5: r_F 001:73:11 xmmreg1 xmmreglo: imm

VPSLLW — Shift Packed Data Left Logical

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F1:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F1:mod xmmreg1 r/m

 xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:71:11 xmmreg1 xmmreg2: imm

 xmmreglo to xmmreg1 using imm8 C5: r_F 001:71:11 xmmreg1 xmmreglo: imm

VPSLLD — Shift Packed Data Left Logical

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F2:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F2:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F2:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F2:mod xmmreg1 r/m

 xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:72:11 xmmreg1 xmmreg2: imm

 xmmreglo to xmmreg1 using imm8 C5: r_F 001:72:11 xmmreg1 xmmreglo: imm

VPSLLQ — Shift Packed Data Left Logical

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F3:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F3:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F3:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F3:mod xmmreg1 r/m

 xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm

 xmmreglo to xmmreg1 using imm8 C5: r_F 001:73:11 xmmreg1 xmmreglo: imm

VPSRAW — Shift Packed Data Right Arithmetic

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E1:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E1:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:E1:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E1:mod xmmreg1 r/m

 xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:71:11 xmmreg1 xmmreg2: imm

 xmmreglo to xmmreg1 using imm8 C5: r_F 001:71:11 xmmreg1 xmmreglo: imm

VPSRAD — Shift Packed Data Right Arithmetic

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E2:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E2:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:E2:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E2:mod xmmreg1 r/m

 xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:72:11 xmmreg1 xmmreg2: imm

Instruction and Format Encoding

B-94 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

 xmmreglo to xmmreg1 using imm8 C5: r_F 001:72:11 xmmreg1 xmmreglo: imm

VPSRLDQ — Shift Double Quadword Right Logical

 xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm

 xmmreglo to xmmreg1 using imm8 C5: r_F 001:73:11 xmmreg1 xmmreglo: imm

VPSRLW — Shift Packed Data Right Logical

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D1:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D1:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:D1:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D1:mod xmmreg1 r/m

 xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:71:11 xmmreg1 xmmreg2: imm

 xmmreglo to xmmreg1 using imm8 C5: r_F 001:71:11 xmmreg1 xmmreglo: imm

VPSRLD — Shift Packed Data Right Logical

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D2:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D2:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:D2:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D2:mod xmmreg1 r/m

 xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:72:11 xmmreg1 xmmreg2: imm

 xmmreglo to xmmreg1 using imm8 C5: r_F 001:72:11 xmmreg1 xmmreglo: imm

VPSRLQ — Shift Packed Data Right Logical

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D3:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D3:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:D3:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D3:mod xmmreg1 r/m

 xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm

 xmmreglo to xmmreg1 using imm8 C5: r_F 001:73:11 xmmreg1 xmmreglo: imm

VPSUBB — Subtract Packed Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F8:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F8:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F8:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F8:mod xmmreg1 r/m

VPSUBW — Subtract Packed Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F9:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F9:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F9:11 xmmreg1 xmmreglo3

 xmmrelog2 with mem to xmmreg1 C5: r_xmmreglo2 001:F9:mod xmmreg1 r/m

VPSUBD — Subtract Packed Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:FA:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:FA:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:FA:11 xmmreg1 xmmreglo3

Instruction and Format Encoding

Vol. 2D B-95

INSTRUCTION FORMATS AND ENCODINGS

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:FA:mod xmmreg1 r/m

VPSUBQ — Subtract Packed Quadword Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:FB:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:FB:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:FB:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:FB:mod xmmreg1 r/m

VPSUBSB — Subtract Packed Signed Integers with Signed Saturation

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E8:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E8:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:E8:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E8:mod xmmreg1 r/m

VPSUBSW — Subtract Packed Signed Integers with Signed Saturation

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E9:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E9:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:E9:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E9:mod xmmreg1 r/m

VPSUBUSB — Subtract Packed Unsigned Integers with Unsigned Saturation

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D8:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D8:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:D8:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D8:mod xmmreg1 r/m

VPSUBUSW — Subtract Packed Unsigned Integers with Unsigned Saturation

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D9:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D9:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:D9:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D9:mod xmmreg1 r/m

VPUNPCKHBW — Unpack High Data

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:68:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:68:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:68:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:68:mod xmmreg1 r/m

VPUNPCKHWD — Unpack High Data

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:69:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:69:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:69:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:69:mod xmmreg1 r/m

VPUNPCKHDQ — Unpack High Data

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6A:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:6A:mod xmmreg1 r/m

Instruction and Format Encoding

B-96 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:6A:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6A:mod xmmreg1 r/m

VPUNPCKHQDQ — Unpack High Data

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6D:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:6D:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:6D:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6D:mod xmmreg1 r/m

VPUNPCKLBW — Unpack Low Data

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:60:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:60:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:60:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:60:mod xmmreg1 r/m

VPUNPCKLWD — Unpack Low Data

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:61:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:61:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:61:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:61:mod xmmreg1 r/m

VPUNPCKLDQ — Unpack Low Data

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:62:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:62:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:62:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:62:mod xmmreg1 r/m

VPUNPCKLQDQ — Unpack Low Data

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6C:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:6C:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:6C:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6C:mod xmmreg1 r/m

VPXOR — Logical Exclusive OR

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EF:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EF:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:EF:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EF:mod xmmreg1 r/m

VSHUFPD — Shuffle Packed Double Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 using imm8 C4: rxb0_1: w xmmreg2 001:C6:11 xmmreg1 xmmreg3: imm

 xmmreg2 with mem to xmmreg1 using imm8 C4: rxb0_1: w xmmreg2 001:C6:mod xmmreg1 r/m: imm

 xmmreglo2 with xmmreglo3 to xmmreg1 using imm8 C5: r_xmmreglo2 001:C6:11 xmmreg1 xmmreglo3: imm

 xmmreglo2 with mem to xmmreg1 using imm8 C5: r_xmmreglo2 001:C6:mod xmmreg1 r/m: imm

 ymmreg2 with ymmreg3 to ymmreg1 using imm8 C4: rxb0_1: w ymmreg2 101:C6:11 ymmreg1 ymmreg3: imm

 ymmreg2 with mem to ymmreg1 using imm8 C4: rxb0_1: w ymmreg2 101:C6:mod ymmreg1 r/m: imm

Instruction and Format Encoding

Vol. 2D B-97

INSTRUCTION FORMATS AND ENCODINGS

 ymmreglo2 with ymmreglo3 to ymmreg1 using imm8 C5: r_ymmreglo2 101:C6:11 ymmreg1 ymmreglo3: imm

 ymmreglo2 with mem to ymmreg1 using imm8 C5: r_ymmreglo2 101:C6:mod ymmreg1 r/m: imm

VSQRTPD — Compute Square Roots of Packed Double Precision Floating-Point Values

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:51:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 001:51:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 001:51:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 001:51:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:51:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 101:51:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 101:51:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 101:51:mod ymmreg1 r/m

VSQRTSD — Compute Square Root of Scalar Double Precision Floating-Point Value

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:51:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:51:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:51:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:51:mod xmmreg1 r/m

VSUBPD — Subtract Packed Double Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:5C:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:5C:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:5C:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:5C:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:5C:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:5C:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:5C:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:5C:mod ymmreg1 r/m

VSUBSD — Subtract Scalar Double Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:5C:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:5C:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:5C:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:5C:mod xmmreg1 r/m

VUCOMISD — Unordered Compare Scalar Double Precision Floating-Point Values and Set EFLAGS

 xmmreg2 with xmmreg1, set EFLAGS C4: rxb0_1: w_F xmmreg1 001:2E:11 xmmreg2

 mem with xmmreg1, set EFLAGS C4: rxb0_1: w_F xmmreg1 001:2E:mod r/m

 xmmreglo with xmmreg1, set EFLAGS C5: r_F xmmreg1 001:2E:11 xmmreglo

 mem with xmmreg1, set EFLAGS C5: r_F xmmreg1 001:2E:mod r/m

VUNPCKHPD — Unpack and Interleave High Packed Double Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:15:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:15:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:15:11 xmmreg1 xmmreglo3

Instruction and Format Encoding

B-98 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:15:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:15:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:15:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:15:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:15:mod ymmreg1 r/m

VUNPCKHPS — Unpack and Interleave High Packed Single Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:15:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:15:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:15:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:15:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:15:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:15:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:15:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:15:mod ymmreg1 r/m

VUNPCKLPD — Unpack and Interleave Low Packed Double Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:14:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:14:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:14:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:14:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:14:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:14:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:14:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:14:mod ymmreg1 r/m

VUNPCKLPS — Unpack and Interleave Low Packed Single Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:14:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:14:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:14:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:14:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:14:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:14:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:14:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:14:mod ymmreg1 r/m

VXORPD — Bitwise Logical XOR for Double Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:57:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:57:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:57:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:57:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:57:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:57:mod ymmreg1 r/m

Instruction and Format Encoding

Vol. 2D B-99

INSTRUCTION FORMATS AND ENCODINGS

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:57:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:57:mod ymmreg1 r/m

VADDPS — Add Packed Single Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:58:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:58:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:58:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:58:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:58:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:58:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:58:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:58:mod ymmreg1 r/m

VADDSS — Add Scalar Single Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:58:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:58:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:58:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:58:mod xmmreg1 r/m

VANDPS — Bitwise Logical AND of Packed Single Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:54:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:54:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:54:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:54:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:54:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:54:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:54:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:54:mod ymmreg1 r/m

VANDNPS — Bitwise Logical AND NOT of Packed Single Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:55:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:55:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:55:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:55:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:55:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:55:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:55:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:55:mod ymmreg1 r/m

VCMPPS — Compare Packed Single Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:C2:11 xmmreg1 xmmreg3: imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:C2:mod xmmreg1 r/m: imm

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:C2:11 xmmreg1 xmmreglo3: imm

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:C2:mod xmmreg1 r/m: imm

Instruction and Format Encoding

B-100 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:C2:11 ymmreg1 ymmreg3: imm

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:C2:mod ymmreg1 r/m: imm

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:C2:11 ymmreg1 ymmreglo3: imm

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:C2:mod ymmreg1 r/m: imm

VCMPSS — Compare Scalar Single Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:C2:11 xmmreg1 xmmreg3: imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:C2:mod xmmreg1 r/m: imm

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:C2:11 xmmreg1 xmmreglo3: imm

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:C2:mod xmmreg1 r/m: imm

VCOMISS — Compare Scalar Ordered Single Precision Floating-Point Values and Set EFLAGS

 xmmreg2 with xmmreg1 C4: rxb0_1: w_F 000:2F:11 xmmreg1 xmmreg2

 mem with xmmreg1 C4: rxb0_1: w_F 000:2F:mod xmmreg1 r/m

 xmmreglo with xmmreg1 C5: r_F 000:2F:11 xmmreg1 xmmreglo

 mem with xmmreg1 C5: r_F 000:2F:mod xmmreg1 r/m

VCVTSI2SS — Convert Signed Integer to Scalar Single Precision FP Value

 xmmreg2 with reg to xmmreg1 C4: rxb0_1: 0 xmmreg2 010:2A:11 xmmreg1 reg

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: 0 xmmreg2 010:2A:mod xmmreg1 r/m

 xmmreglo2 with reglo to xmmreg1 C5: r_xmmreglo2 010:2A:11 xmmreg1 reglo

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:2A:mod xmmreg1 r/m

 xmmreg2 with reg to xmmreg1 C4: rxb0_1: 1 xmmreg2 010:2A:11 xmmreg1 reg

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: 1 xmmreg2 010:2A:mod xmmreg1 r/m

VCVTSS2SI — Convert Scalar Single Precision FP Value to Signed Integer

 xmmreg1 to reg C4: rxb0_1: 0_F 010:2D:11 reg xmmreg1

 mem to reg C4: rxb0_1: 0_F 010:2D:mod reg r/m

 xmmreglo to reg C5: r_F 010:2D:11 reg xmmreglo

 mem to reg C5: r_F 010:2D:mod reg r/m

 xmmreg1 to reg C4: rxb0_1: 1_F 010:2D:11 reg xmmreg1

 mem to reg C4: rxb0_1: 1_F 010:2D:mod reg r/m

VCVTTSS2SI — Convert with Truncation Scalar Single Precision FP Value to Signed Integer

 xmmreg1 to reg C4: rxb0_1: 0_F 010:2C:11 reg xmmreg1

 mem to reg C4: rxb0_1: 0_F 010:2C:mod reg r/m

 xmmreglo to reg C5: r_F 010:2C:11 reg xmmreglo

 mem to reg C5: r_F 010:2C:mod reg r/m

 xmmreg1 to reg C4: rxb0_1: 1_F 010:2C:11 reg xmmreg1

 mem to reg C4: rxb0_1: 1_F 010:2C:mod reg r/m

VDIVPS — Divide Packed Single Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5E:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5E:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:5E:11 xmmreg1 xmmreglo3

Instruction and Format Encoding

Vol. 2D B-101

INSTRUCTION FORMATS AND ENCODINGS

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:5E:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:5E:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5E:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:5E:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:5E:mod ymmreg1 r/m

VDIVSS — Divide Scalar Single Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5E:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:5E:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:5E:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5E:mod xmmreg1 r/m

VLDMXCSR — Load MXCSR Register

 mem to MXCSR reg C4: rxb0_1: w_F 000:AEmod 011 r/m

 mem to MXCSR reg C5: r_F 000:AEmod 011 r/m

VMAXPS — Return Maximum Packed Single Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5F:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5F:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:5F:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:5F:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:5F:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5F:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:5F:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:5F:mod ymmreg1 r/m

VMAXSS — Return Maximum Scalar Single Precision Floating-Point Value

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5F:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:5F:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:5F:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5F:mod xmmreg1 r/m

VMINPS — Return Minimum Packed Single Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5D:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5D:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:5D:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:5D:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:5D:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5D:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:5D:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:5D:mod ymmreg1 r/m

VMINSS — Return Minimum Scalar Single Precision Floating-Point Value

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5D:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:5D:mod xmmreg1 r/m

Instruction and Format Encoding

B-102 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:5D:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5D:mod xmmreg1 r/m

VMOVAPS— Move Aligned Packed Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:28:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 000:28:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 000:28:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 000:28:mod xmmreg1 r/m

 xmmreg1 to xmmreg2 C4: rxb0_1: w_F 000:29:11 xmmreg2 xmmreg1

 xmmreg1 to mem C4: rxb0_1: w_F 000:29:mod r/m xmmreg1

 xmmreg1 to xmmreglo C5: r_F 000:29:11 xmmreglo xmmreg1

 xmmreg1 to mem C5: r_F 000:29:mod r/m xmmreg1

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:28:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 100:28:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 100:28:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 100:28:mod ymmreg1 r/m

 ymmreg1 to ymmreg2 C4: rxb0_1: w_F 100:29:11 ymmreg2 ymmreg1

 ymmreg1 to mem C4: rxb0_1: w_F 100:29:mod r/m ymmreg1

 ymmreg1 to ymmreglo C5: r_F 100:29:11 ymmreglo ymmreg1

 ymmreg1 to mem C5: r_F 100:29:mod r/m ymmreg1

VMOVHPS — Move High Packed Single Precision Floating-Point Values

 xmmreg1 with mem to xmmreg2 C4: rxb0_1: w xmmreg1 000:16:mod xmmreg2 r/m

 xmmreg1 with mem to xmmreglo2 C5: r_xmmreg1 000:16:mod xmmreglo2 r/m

 xmmreg1 to mem C4: rxb0_1: w_F 000:17:mod r/m xmmreg1

 xmmreglo to mem C5: r_F 000:17:mod r/m xmmreglo

VMOVLHPS — Move Packed Single Precision Floating-Point Values Low to High

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:16:11 xmmreg1 xmmreg3

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:16:11 xmmreg1 xmmreglo3

VMOVLPS — Move Low Packed Single Precision Floating-Point Values

 xmmreg1 with mem to xmmreg2 C4: rxb0_1: w xmmreg1 000:12:mod xmmreg2 r/m

 xmmreg1 with mem to xmmreglo2 C5: r_xmmreg1 000:12:mod xmmreglo2 r/m

 xmmreg1 to mem C4: rxb0_1: w_F 000:13:mod r/m xmmreg1

 xmmreglo to mem C5: r_F 000:13:mod r/m xmmreglo

VMOVMSKPS — Extract Packed Single Precision Floating-Point Sign Mask

 xmmreg2 to reg C4: rxb0_1: w_F 000:50:11 reg xmmreg2

 xmmreglo to reg C5: r_F 000:50:11 reg xmmreglo

 ymmreg2 to reg C4: rxb0_1: w_F 100:50:11 reg ymmreg2

 ymmreglo to reg C5: r_F 100:50:11 reg ymmreglo

VMOVNTPS — Store Packed Single Precision Floating-Point Values Using Non-Temporal Hint

 xmmreg1 to mem C4: rxb0_1: w_F 000:2B:mod r/m xmmreg1

Instruction and Format Encoding

Vol. 2D B-103

INSTRUCTION FORMATS AND ENCODINGS

 xmmreglo to mem C5: r_F 000:2B:mod r/m xmmreglo

 ymmreg1 to mem C4: rxb0_1: w_F 100:2B:mod r/m ymmreg1

 ymmreglo to mem C5: r_F 100:2B:mod r/m ymmreglo

VMOVSS — Move Scalar Single Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:10:11 xmmreg1 xmmreg3

 mem to xmmreg1 C4: rxb0_1: w_F 010:10:mod xmmreg1 r/m

 xmmreg2 with xmmreg3 to xmmreg1 C5: r_xmmreg2 010:10:11 xmmreg1 xmmreg3

 mem to xmmreg1 C5: r_F 010:10:mod xmmreg1 r/m

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:11:11 xmmreg1 xmmreg3

 xmmreg1 to mem C4: rxb0_1: w_F 010:11:mod r/m xmmreg1

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:11:11 xmmreg1 xmmreglo3

 xmmreglo to mem C5: r_F 010:11:mod r/m xmmreglo

VMOVUPS— Move Unaligned Packed Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:10:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 000:10:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 000:10:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 000:10:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:10:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 100:10:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 100:10:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 100:10:mod ymmreg1 r/m

 xmmreg1 to xmmreg2 C4: rxb0_1: w_F 000:11:11 xmmreg2 xmmreg1

 xmmreg1 to mem C4: rxb0_1: w_F 000:11:mod r/m xmmreg1

 xmmreg1 to xmmreglo C5: r_F 000:11:11 xmmreglo xmmreg1

 xmmreg1 to mem C5: r_F 000:11:mod r/m xmmreg1

 ymmreg1 to ymmreg2 C4: rxb0_1: w_F 100:11:11 ymmreg2 ymmreg1

 ymmreg1 to mem C4: rxb0_1: w_F 100:11:mod r/m ymmreg1

 ymmreg1 to ymmreglo C5: r_F 100:11:11 ymmreglo ymmreg1

 ymmreg1 to mem C5: r_F 100:11:mod r/m ymmreg1

VMULPS — Multiply Packed Single Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:59:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:59:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:59:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:59:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:59:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:59:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:59:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:59:mod ymmreg1 r/m

VMULSS — Multiply Scalar Single Precision Floating-Point Values

Instruction and Format Encoding

B-104 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:59:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:59:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:59:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:59:mod xmmreg1 r/m

VORPS — Bitwise Logical OR of Single Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:56:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:56:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:56:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:56:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:56:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:56:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:56:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:56:mod ymmreg1 r/m

VRCPPS — Compute Reciprocals of Packed Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:53:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 000:53:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 000:53:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 000:53:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:53:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 100:53:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 100:53:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 100:53:mod ymmreg1 r/m

VRCPSS — Compute Reciprocal of Scalar Single Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:53:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:53:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:53:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:53:mod xmmreg1 r/m

VRSQRTPS — Compute Reciprocals of Square Roots of Packed Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:52:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 000:52:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 000:52:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 000:52:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:52:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 100:52:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 100:52:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 100:52:mod ymmreg1 r/m

VRSQRTSS — Compute Reciprocal of Square Root of Scalar Single Precision Floating-Point Value

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:52:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:52:mod xmmreg1 r/m

Instruction and Format Encoding

Vol. 2D B-105

INSTRUCTION FORMATS AND ENCODINGS

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:52:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:52:mod xmmreg1 r/m

VSHUFPS — Shuffle Packed Single Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1, imm8 C4: rxb0_1: w xmmreg2 000:C6:11 xmmreg1 xmmreg3: imm

 xmmreg2 with mem to xmmreg1, imm8 C4: rxb0_1: w xmmreg2 000:C6:mod xmmreg1 r/m: imm

 xmmreglo2 with xmmreglo3 to xmmreg1, imm8 C5: r_xmmreglo2 000:C6:11 xmmreg1 xmmreglo3: imm

 xmmreglo2 with mem to xmmreg1, imm8 C5: r_xmmreglo2 000:C6:mod xmmreg1 r/m: imm

 ymmreg2 with ymmreg3 to ymmreg1, imm8 C4: rxb0_1: w ymmreg2 100:C6:11 ymmreg1 ymmreg3: imm

 ymmreg2 with mem to ymmreg1, imm8 C4: rxb0_1: w ymmreg2 100:C6:mod ymmreg1 r/m: imm

 ymmreglo2 with ymmreglo3 to ymmreg1, imm8 C5: r_ymmreglo2 100:C6:11 ymmreg1 ymmreglo3: imm

 ymmreglo2 with mem to ymmreg1, imm8 C5: r_ymmreglo2 100:C6:mod ymmreg1 r/m: imm

VSQRTPS — Compute Square Roots of Packed Single Precision Floating-Point Values

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:51:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 000:51:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 000:51:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 000:51:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:51:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 100:51:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 100:51:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 100:51:mod ymmreg1 r/m

VSQRTSS — Compute Square Root of Scalar Single Precision Floating-Point Value

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:51:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:51:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:51:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:51:mod xmmreg1 r/m

VSTMXCSR — Store MXCSR Register State

 MXCSR to mem C4: rxb0_1: w_F 000:AE:mod 011 r/m

 MXCSR to mem C5: r_F 000:AE:mod 011 r/m

VSUBPS — Subtract Packed Single Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5C:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5C:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:5C:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:5C:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:5C:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5C:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:5C:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:5C:mod ymmreg1 r/m

VSUBSS — Subtract Scalar Single Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5C:11 xmmreg1 xmmreg3

Instruction and Format Encoding

B-106 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:5C:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:5C:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5C:mod xmmreg1 r/m

VUCOMISS — Unordered Compare Scalar Single Precision Floating-Point Values and Set EFLAGS

 xmmreg2 with xmmreg1 C4: rxb0_1: w_F 000:2E:11 xmmreg1 xmmreg2

 mem with xmmreg1 C4: rxb0_1: w_F 000:2E:mod xmmreg1 r/m

 xmmreglo with xmmreg1 C5: r_F 000:2E:11 xmmreg1 xmmreglo

 mem with xmmreg1 C5: r_F 000:2E:mod xmmreg1 r/m

UNPCKHPS — Unpack and Interleave High Packed Single Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:15:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:15mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:15:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:15mod ymmreg1 r/m

UNPCKLPS — Unpack and Interleave Low Packed Single Precision Floating-Point Value

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:14:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:14mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:14:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:14mod ymmreg1 r/m

VXORPS — Bitwise Logical XOR for Single Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:57:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:57:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:57:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:57:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:57:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:57:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:57:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:57:mod ymmreg1 r/m

VBROADCAST —Load with Broadcast

 mem to xmmreg1 C4: rxb0_2: 0_F 001:18:mod xmmreg1 r/m

 mem to ymmreg1 C4: rxb0_2: 0_F 101:18:mod ymmreg1 r/m

 mem to ymmreg1 C4: rxb0_2: 0_F 101:19:mod ymmreg1 r/m

 mem to ymmreg1 C4: rxb0_2: 0_F 101:1A:mod ymmreg1 r/m

VEXTRACTF128 — Extract Packed Floating-Point Values

 ymmreg2 to xmmreg1, imm8 C4: rxb0_3: 0_F 001:19:11 xmmreg1 ymmreg2: imm

 ymmreg2 to mem, imm8 C4: rxb0_3: 0_F 001:19:mod r/m ymmreg2: imm

VINSERTF128 — Insert Packed Floating-Point Values

 xmmreg3 and merge with ymmreg2 to ymmreg1, imm8 C4: rxb0_3: 0 ymmreg2101:18:11 ymmreg1 xmmreg3: imm

 mem and merge with ymmreg2 to ymmreg1, imm8 C4: rxb0_3: 0 ymmreg2 101:18:mod ymmreg1 r/m: imm

VPERMILPD — Permute Double Precision Floating-Point Values

Instruction and Format Encoding

Vol. 2D B-107

INSTRUCTION FORMATS AND ENCODINGS

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: 0 xmmreg2 001:0D:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: 0 xmmreg2 001:0D:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_2: 0 ymmreg2 101:0D:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_2: 0 ymmreg2 101:0D:mod ymmreg1 r/m

 xmmreg2 to xmmreg1, imm C4: rxb0_3: 0_F 001:05:11 xmmreg1 xmmreg2: imm

 mem to xmmreg1, imm C4: rxb0_3: 0_F 001:05:mod xmmreg1 r/m: imm

 ymmreg2 to ymmreg1, imm C4: rxb0_3: 0_F 101:05:11 ymmreg1 ymmreg2: imm

 mem to ymmreg1, imm C4: rxb0_3: 0_F 101:05:mod ymmreg1 r/m: imm

VPERMILPS — Permute Single Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: 0 xmmreg2 001:0C:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: 0 xmmreg2 001:0C:mod xmmreg1 r/m

 xmmreg2 to xmmreg1, imm C4: rxb0_3: 0_F 001:04:11 xmmreg1 xmmreg2: imm

 mem to xmmreg1, imm C4: rxb0_3: 0_F 001:04:mod xmmreg1 r/m: imm

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_2: 0 ymmreg2 101:0C:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_2: 0 ymmreg2 101:0C:mod ymmreg1 r/m

 ymmreg2 to ymmreg1, imm C4: rxb0_3: 0_F 101:04:11 ymmreg1 ymmreg2: imm

 mem to ymmreg1, imm C4: rxb0_3: 0_F 101:04:mod ymmreg1 r/m: imm

VPERM2F128 — Permute Floating-Point Values

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_3: 0 ymmreg2 101:06:11 ymmreg1 ymmreg3: imm

 ymmreg2 with mem to ymmreg1 C4: rxb0_3: 0 ymmreg2 101:06:mod ymmreg1 r/m: imm

VTESTPD/VTESTPS — Packed Bit Test

 xmmreg2 to xmmreg1 C4: rxb0_2: 0_F 001:0E:11 xmmreg2 xmmreg1

 mem to xmmreg1 C4: rxb0_2: 0_F 001:0E:mod xmmreg2 r/m

 ymmreg2 to ymmreg1 C4: rxb0_2: 0_F 101:0E:11 ymmreg2 ymmreg1

 mem to ymmreg1 C4: rxb0_2: 0_F 101:0E:mod ymmreg2 r/m

 xmmreg2 to xmmreg1 C4: rxb0_2: 0_F 001:0F:11 xmmreg1 xmmreg2: imm

 mem to xmmreg1 C4: rxb0_2: 0_F 001:0F:mod xmmreg1 r/m: imm

 ymmreg2 to ymmreg1 C4: rxb0_2: 0_F 101:0F:11 ymmreg1 ymmreg2: imm

 mem to ymmreg1 C4: rxb0_2: 0_F 101:0F:mod ymmreg1 r/m: imm

NOTES:
1. The term “lo” refers to the lower eight registers, 0-7

Instruction and Format Encoding

B-108 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

B.17 FLOATING-POINT INSTRUCTION FORMATS AND ENCODINGS
Table B-38 shows the five different formats used for floating-point instructions. In all cases, instructions are at
least two bytes long and begin with the bit pattern 11011.

The Mod and R/M fields of the ModR/M byte have the same interpretation as the corresponding fields of the integer
instructions. The SIB byte and disp (displacement) are optionally present in instructions that have Mod and R/M
fields. Their presence depends on the values of Mod and R/M, as for integer instructions.

Table B-39 shows the formats and encodings of the floating-point instructions.

Table B-38. General Floating-Point Instruction Formats

Instruction

First Byte Second Byte Optional Fields

1 11011 OPA 1 mod 1 OPB r/m s-i-b disp

2 11011 MF OPA mod OPB r/m s-i-b disp

3 11011 d P OPA 1 1 OPB R ST(i)

4 11011 0 0 1 1 1 1 OP

5 11011 0 1 1 1 1 1 OP

15–11 10 9 8 7 6 5 4 3 2 1 0

MF = Memory Format
00 — 32-bit real
01 — 32-bit integer
10 — 64-bit real
11 — 16-bit integer

P = Pop
0 — Do not pop stack
1 — Pop stack after operation

d = Destination
0 — Destination is ST(0)
1 — Destination is ST(i)

R XOR d = 0 — Destination OP Source
R XOR d = 1 — Source OP Destination

ST(i) = Register stack element i
000 = Stack Top
001 = Second stack element
 ⋅
 ⋅
 ⋅
111 = Eighth stack element

Table B-39. Floating-Point Instruction Formats and Encodings

Instruction and Format Encoding

F2XM1 – Compute 2ST(0) – 1 11011 001 : 1111 0000

FABS – Absolute Value 11011 001 : 1110 0001

FADD – Add

 ST(0) := ST(0) + 32-bit memory 11011 000 : mod 000 r/m

ST(0) := ST(0) + 64-bit memory 11011 100 : mod 000 r/m

ST(d) := ST(0) + ST(i) 11011 d00 : 11 000 ST(i)

FADDP – Add and Pop

ST(0) := ST(0) + ST(i) 11011 110 : 11 000 ST(i)

FBLD – Load Binary Coded Decimal 11011 111 : mod 100 r/m

FBSTP – Store Binary Coded Decimal and Pop 11011 111 : mod 110 r/m

FCHS – Change Sign 11011 001 : 1110 0000

FCLEX – Clear Exceptions 11011 011 : 1110 0010

FCOM – Compare Real

Vol. 2D B-109

INSTRUCTION FORMATS AND ENCODINGS

32-bit memory 11011 000 : mod 010 r/m

64-bit memory 11011 100 : mod 010 r/m

ST(i) 11011 000 : 11 010 ST(i)

FCOMP – Compare Real and Pop

32-bit memory 11011 000 : mod 011 r/m

64-bit memory 11011 100 : mod 011 r/m

ST(i) 11011 000 : 11 011 ST(i)

FCOMPP – Compare Real and Pop Twice 11011 110 : 11 011 001

FCOMIP – Compare Real, Set EFLAGS, and Pop 11011 111 : 11 110 ST(i)

FCOS – Cosine of ST(0) 11011 001 : 1111 1111

FDECSTP – Decrement Stack-Top Pointer 11011 001 : 1111 0110

FDIV – Divide

ST(0) := ST(0) ÷ 32-bit memory 11011 000 : mod 110 r/m

ST(0) := ST(0) ÷ 64-bit memory 11011 100 : mod 110 r/m

ST(d) := ST(0) ÷ ST(i) 11011 d00 : 1111 R ST(i)

FDIVP – Divide and Pop

ST(0) := ST(0) ÷ ST(i) 11011 110 : 1111 1 ST(i)

FDIVR – Reverse Divide

ST(0) := 32-bit memory ÷ ST(0) 11011 000 : mod 111 r/m

ST(0) := 64-bit memory ÷ ST(0) 11011 100 : mod 111 r/m

ST(d) := ST(i) ÷ ST(0) 11011 d00 : 1111 R ST(i)

FDIVRP – Reverse Divide and Pop

ST(0) := ST(i) ÷ ST(0) 11011 110 : 1111 0 ST(i)

FFREE – Free ST(i) Register 11011 101 : 1100 0 ST(i)

FIADD – Add Integer

ST(0) := ST(0) + 16-bit memory 11011 110 : mod 000 r/m

ST(0) := ST(0) + 32-bit memory 11011 010 : mod 000 r/m

FICOM – Compare Integer

16-bit memory 11011 110 : mod 010 r/m

32-bit memory 11011 010 : mod 010 r/m

FICOMP – Compare Integer and Pop

16-bit memory 11011 110 : mod 011 r/m

32-bit memory 11011 010 : mod 011 r/m

FIDIV – Divide

ST(0) := ST(0) ÷ 16-bit memory 11011 110 : mod 110 r/m

ST(0) := ST(0) ÷ 32-bit memory 11011 010 : mod 110 r/m

FIDIVR – Reverse Divide

ST(0) := 16-bit memory ÷ ST(0) 11011 110 : mod 111 r/m

Table B-39. Floating-Point Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

B-110 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

ST(0) := 32-bit memory ÷ ST(0) 11011 010 : mod 111 r/m

FILD – Load Integer

16-bit memory 11011 111 : mod 000 r/m

32-bit memory 11011 011 : mod 000 r/m

64-bit memory 11011 111 : mod 101 r/m

FIMUL– Multiply

ST(0) := ST(0) × 16-bit memory 11011 110 : mod 001 r/m

ST(0) := ST(0) × 32-bit memory 11011 010 : mod 001 r/m

FINCSTP – Increment Stack Pointer 11011 001 : 1111 0111

FINIT – Initialize Floating-Point Unit

FIST – Store Integer

16-bit memory 11011 111 : mod 010 r/m

32-bit memory 11011 011 : mod 010 r/m

FISTP – Store Integer and Pop

16-bit memory 11011 111 : mod 011 r/m

32-bit memory 11011 011 : mod 011 r/m

64-bit memory 11011 111 : mod 111 r/m

FISUB – Subtract

ST(0) := ST(0) - 16-bit memory 11011 110 : mod 100 r/m

ST(0) := ST(0) - 32-bit memory 11011 010 : mod 100 r/m

FISUBR – Reverse Subtract

ST(0) := 16-bit memory − ST(0) 11011 110 : mod 101 r/m

ST(0) := 32-bit memory − ST(0) 11011 010 : mod 101 r/m

FLD – Load Real

32-bit memory 11011 001 : mod 000 r/m

64-bit memory 11011 101 : mod 000 r/m

80-bit memory 11011 011 : mod 101 r/m

ST(i) 11011 001 : 11 000 ST(i)

FLD1 – Load +1.0 into ST(0) 11011 001 : 1110 1000

FLDCW – Load Control Word 11011 001 : mod 101 r/m

FLDENV – Load FPU Environment 11011 001 : mod 100 r/m

FLDL2E – Load log2(ε) into ST(0) 11011 001 : 1110 1010

FLDL2T – Load log2(10) into ST(0) 11011 001 : 1110 1001

FLDLG2 – Load log10(2) into ST(0) 11011 001 : 1110 1100

FLDLN2 – Load logε(2) into ST(0) 11011 001 : 1110 1101

FLDPI – Load π into ST(0) 11011 001 : 1110 1011

FLDZ – Load +0.0 into ST(0) 11011 001 : 1110 1110

FMUL – Multiply

Table B-39. Floating-Point Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

Vol. 2D B-111

INSTRUCTION FORMATS AND ENCODINGS

ST(0) := ST(0) × 32-bit memory 11011 000 : mod 001 r/m

ST(0) := ST(0) × 64-bit memory 11011 100 : mod 001 r/m

ST(d) := ST(0) × ST(i) 11011 d00 : 1100 1 ST(i)

FMULP – Multiply

ST(i) := ST(0) × ST(i) 11011 110 : 1100 1 ST(i)

FNOP – No Operation 11011 001 : 1101 0000

FPATAN – Partial Arctangent 11011 001 : 1111 0011

FPREM – Partial Remainder 11011 001 : 1111 1000

FPREM1 – Partial Remainder (IEEE) 11011 001 : 1111 0101

FPTAN – Partial Tangent 11011 001 : 1111 0010

FRNDINT – Round to Integer 11011 001 : 1111 1100

FRSTOR – Restore FPU State 11011 101 : mod 100 r/m

FSAVE – Store FPU State 11011 101 : mod 110 r/m

FSCALE – Scale 11011 001 : 1111 1101

FSIN – Sine 11011 001 : 1111 1110

FSINCOS – Sine and Cosine 11011 001 : 1111 1011

FSQRT – Square Root 11011 001 : 1111 1010

FST – Store Real

32-bit memory 11011 001 : mod 010 r/m

64-bit memory 11011 101 : mod 010 r/m

ST(i) 11011 101 : 11 010 ST(i)

FSTCW – Store Control Word 11011 001 : mod 111 r/m

FSTENV – Store FPU Environment 11011 001 : mod 110 r/m

FSTP – Store Real and Pop

32-bit memory 11011 001 : mod 011 r/m

64-bit memory 11011 101 : mod 011 r/m

80-bit memory 11011 011 : mod 111 r/m

ST(i) 11011 101 : 11 011 ST(i)

FSTSW – Store Status Word into AX 11011 111 : 1110 0000

FSTSW – Store Status Word into Memory 11011 101 : mod 111 r/m

FSUB – Subtract

ST(0) := ST(0) – 32-bit memory 11011 000 : mod 100 r/m

ST(0) := ST(0) – 64-bit memory 11011 100 : mod 100 r/m

ST(d) := ST(0) – ST(i) 11011 d00 : 1110 R ST(i)

FSUBP – Subtract and Pop

ST(0) := ST(0) – ST(i) 11011 110 : 1110 1 ST(i)

FSUBR – Reverse Subtract

ST(0) := 32-bit memory – ST(0) 11011 000 : mod 101 r/m

Table B-39. Floating-Point Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

B-112 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

B.18 VMX INSTRUCTIONS
Table B-40 describes virtual-machine extensions (VMX).

ST(0) := 64-bit memory – ST(0) 11011 100 : mod 101 r/m

ST(d) := ST(i) – ST(0) 11011 d00 : 1110 R ST(i)

FSUBRP – Reverse Subtract and Pop

ST(i) := ST(i) – ST(0) 11011 110 : 1110 0 ST(i)

FTST – Test 11011 001 : 1110 0100

FUCOM – Unordered Compare Real 11011 101 : 1110 0 ST(i)

FUCOMP – Unordered Compare Real and Pop 11011 101 : 1110 1 ST(i)

FUCOMPP – Unordered Compare Real and Pop Twice 11011 010 : 1110 1001

FUCOMI – Unorderd Compare Real and Set EFLAGS 11011 011 : 11 101 ST(i)

FUCOMIP – Unorderd Compare Real, Set EFLAGS, and Pop 11011 111 : 11 101 ST(i)

FXAM – Examine 11011 001 : 1110 0101

FXCH – Exchange ST(0) and ST(i) 11011 001 : 1100 1 ST(i)

FXTRACT – Extract Exponent and Significand 11011 001 : 1111 0100

FYL2X – ST(1) × log2(ST(0)) 11011 001 : 1111 0001

FYL2XP1 – ST(1) × log2(ST(0) + 1.0) 11011 001 : 1111 1001

FWAIT – Wait until FPU Ready 1001 1011 (same instruction as WAIT)

Table B-40. Encodings for VMX Instructions
Instruction and Format Encoding

INVEPT—Invalidate Cached EPT Mappings

Descriptor m128 according to reg 01100110 00001111 00111000 10000000: mod reg r/m

INVVPID—Invalidate Cached VPID Mappings

Descriptor m128 according to reg 01100110 00001111 00111000 10000001: mod reg r/m

VMCALL—Call to VM Monitor

Call VMM: causes VM exit 00001111 00000001 11000001

VMCLEAR—Clear Virtual-Machine Control Structure

mem32:VMCS_data_ptr 01100110 00001111 11000111: mod 110 r/m

mem64:VMCS_data_ptr 01100110 00001111 11000111: mod 110 r/m

VMFUNC—Invoke VM Function

Invoke VM function specified in EAX 00001111 00000001 11010100

VMLAUNCH—Launch Virtual Machine

Launch VM managed by Current_VMCS 00001111 00000001 11000010

VMRESUME—Resume Virtual Machine

Resume VM managed by Current_VMCS 00001111 00000001 11000011

VMPTRLD—Load Pointer to Virtual-Machine Control Structure

mem32 to Current_VMCS_ptr 00001111 11000111: mod 110 r/m

Table B-39. Floating-Point Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

Vol. 2D B-113

INSTRUCTION FORMATS AND ENCODINGS

B.19 SMX INSTRUCTIONS
Table B-38 describes Safer Mode extensions (VMX). GETSEC leaf functions are selected by a valid value in EAX on input.

mem64 to Current_VMCS_ptr 00001111 11000111: mod 110 r/m

VMPTRST—Store Pointer to Virtual-Machine Control Structure

Current_VMCS_ptr to mem32 00001111 11000111: mod 111 r/m

Current_VMCS_ptr to mem64 00001111 11000111: mod 111 r/m

VMREAD—Read Field from Virtual-Machine Control Structure

r32 (VMCS_fieldn) to r32

r32 (VMCS_fieldn) to mem32

r64 (VMCS_fieldn) to r64

r64 (VMCS_fieldn) to mem64

00001111 01111000: 11 reg2 reg1

00001111 01111000: mod r32 r/m

00001111 01111000: 11 reg2 reg1

00001111 01111000: mod r64 r/m

VMWRITE—Write Field to Virtual-Machine Control Structure

r32 to r32 (VMCS_fieldn)

mem32 to r32 (VMCS_fieldn)

r64 to r64 (VMCS_fieldn)

mem64 to r64 (VMCS_fieldn)

00001111 01111001: 11 reg1 reg2

00001111 01111001: mod r32 r/m

00001111 01111001: 11 reg1 reg2

00001111 01111001: mod r64 r/m

VMXOFF—Leave VMX Operation

Leave VMX. 00001111 00000001 11000100

VMXON—Enter VMX Operation

Enter VMX. 11110011 000011111 11000111: mod 110 r/m

Table B-41. Encodings for SMX Instructions
Instruction and Format Encoding

GETSEC—GETSEC leaf functions are selected by the value in EAX on input

GETSEC[CAPABILITIES] 00001111 00110111 (EAX= 0)

GETSEC[ENTERACCS] 00001111 00110111 (EAX= 2)

GETSEC[EXITAC] 00001111 00110111 (EAX= 3)

GETSEC[SENTER] 00001111 00110111 (EAX= 4)

GETSEC[SEXIT] 00001111 00110111 (EAX= 5)

GETSEC[PARAMETERS] 00001111 00110111 (EAX= 6)

GETSEC[SMCTRL] 00001111 00110111 (EAX= 7)

GETSEC[WAKEUP] 00001111 00110111 (EAX= 8)

Table B-40. Encodings for VMX Instructions
Instruction and Format Encoding

B-114 Vol. 2D

INSTRUCTION FORMATS AND ENCODINGS

Vol. 2D C-1

APPENDIX C
INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

The two tables in this appendix itemize the Intel C/C++ compiler intrinsics and functional equivalents for the Intel
MMX technology, SSE, SSE2, SSE3, and SSSE3 instructions.

There may be additional intrinsics that do not have an instruction equivalent. It is strongly recommended that the
reader reference the compiler documentation for the complete list of supported intrinsics. Please refer to
http://www.intel.com/support/performancetools/.

Table C-1 presents simple intrinsics and Table C-2 presents composite intrinsics. Some intrinsics are “composites”
because they require more than one instruction to implement them.

Intel C/C++ Compiler intrinsic names reflect the following naming conventions:
mm<intrin_op>_<suffix>

where:
<intrin_op> Indicates the intrinsics basic operation; for example, add for addition and sub for subtrac-

tion
<suffix> Denotes the type of data operated on by the instruction. The first one or two letters of

each suffix denotes whether the data is packed (p), extended packed (ep), or scalar (s).
The remaining letters denote the type:

s single precision floating-point
d double precision floating-point
i128 signed 128-bit integer
i64 signed 64-bit integer
u64 unsigned 64-bit integer
i32 signed 32-bit integer
u32 unsigned 32-bit integer
i16 signed 16-bit integer
u16 unsigned 16-bit integer
i8 signed 8-bit integer
u8 unsigned 8-bit integer

The variable r is generally used for the intrinsic's return value. A number appended to a variable name indicates the
element of a packed object. For example, r0 is the lowest word of r.

The packed values are represented in right-to-left order, with the lowest value being used for scalar operations.
Consider the following example operation:

double a[2] = {1.0, 2.0};
__m128d t = _mm_load_pd(a);

The result is the same as either of the following:

__m128d t = _mm_set_pd(2.0, 1.0);
__m128d t = _mm_setr_pd(1.0, 2.0);

In other words, the XMM register that holds the value t will look as follows:

0127 64 63

2.0 1.0

C-2 Vol. 2D

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

The “scalar” element is 1.0. Due to the nature of the instruction, some intrinsics require their arguments to be
immediates (constant integer literals).

To use an intrinsic in your code, insert a line with the following syntax:

data_type intrinsic_name (parameters)

Where:
data_type Is the return data type, which can be either void, int, __m64, __m128, __m128d, or

__m128i. Only the _mm_empty intrinsic returns void.
intrinsic_name Is the name of the intrinsic, which behaves like a function that you can use in your C/C++

code instead of in-lining the actual instruction.
parameters Represents the parameters required by each intrinsic.

C.1 SIMPLE INTRINSICS

NOTE
For detailed descriptions of the intrinsics in Table C-1, see the corresponding mnemonic in Chapter
3, “Instruction Set Reference, A-L‚” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A; Chapter 4, “Instruction Set Reference, M-U‚” of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B; Chapter 5, “Instruction Set Reference, V,” of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C; or Chapter 6,
“Instruction Set Reference, W-Z,” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2D.

Table C-1. Simple Intrinsics
Mnemonic Intrinsic

ADDPD __m128d _mm_add_pd(__m128d a, __m128d b)

ADDPS __m128 _mm_add_ps(__m128 a, __m128 b)

ADDSD __m128d _mm_add_sd(__m128d a, __m128d b)

ADDSS __m128 _mm_add_ss(__m128 a, __m128 b)

ADDSUBPD __m128d _mm_addsub_pd(__m128d a, __m128d b)

ADDSUBPS __m128 _mm_addsub_ps(__m128 a, __m128 b)

AESDEC __m128i _mm_aesdec (__m128i, __m128i)

AESDECLAST __m128i _mm_aesdeclast (__m128i, __m128i)

AESENC __m128i _mm_aesenc (__m128i, __m128i)

AESENCLAST __m128i _mm_aesenclast (__m128i, __m128i)

AESIMC __m128i _mm_aesimc (__m128i)

AESKEYGENASSIST __m128i _mm_aesimc (__m128i, const int)

ANDNPD __m128d _mm_andnot_pd(__m128d a, __m128d b)

ANDNPS __m128 _mm_andnot_ps(__m128 a, __m128 b)

ANDPD __m128d _mm_and_pd(__m128d a, __m128d b)

ANDPS __m128 _mm_and_ps(__m128 a, __m128 b)

BLENDPD __m128d _mm_blend_pd(__m128d v1, __m128d v2, const int mask)

BLENDPS __m128 _mm_blend_ps(__m128 v1, __m128 v2, const int mask)

BLENDVPD __m128d _mm_blendv_pd(__m128d v1, __m128d v2, __m128d v3)

BLENDVPS __m128 _mm_blendv_ps(__m128 v1, __m128 v2, __m128 v3)

CLFLUSH void _mm_clflush(void const *p)

Vol. 2D C-3

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

CMPPD __m128d _mm_cmpeq_pd(__m128d a, __m128d b)

__m128d _mm_cmplt_pd(__m128d a, __m128d b)

__m128d _mm_cmple_pd(__m128d a, __m128d b)

__m128d _mm_cmpgt_pd(__m128d a, __m128d b)

__m128d _mm_cmpge_pd(__m128d a, __m128d b)

__m128d _mm_cmpneq_pd(__m128d a, __m128d b)

__m128d _mm_cmpnlt_pd(__m128d a, __m128d b)

__m128d _mm_cmpngt_pd(__m128d a, __m128d b)

__m128d _mm_cmpnge_pd(__m128d a, __m128d b)

__m128d _mm_cmpord_pd(__m128d a, __m128d b)

__m128d _mm_cmpunord_pd(__m128d a, __m128d b)

__m128d _mm_cmpnle_pd(__m128d a, __m128d b)

CMPPS __m128 _mm_cmpeq_ps(__m128 a, __m128 b)

__m128 _mm_cmplt_ps(__m128 a, __m128 b)

__m128 _mm_cmple_ps(__m128 a, __m128 b)

__m128 _mm_cmpgt_ps(__m128 a, __m128 b)

__m128 _mm_cmpge_ps(__m128 a, __m128 b)

__m128 _mm_cmpneq_ps(__m128 a, __m128 b)

__m128 _mm_cmpnlt_ps(__m128 a, __m128 b)

__m128 _mm_cmpngt_ps(__m128 a, __m128 b)

__m128 _mm_cmpnge_ps(__m128 a, __m128 b)

__m128 _mm_cmpord_ps(__m128 a, __m128 b)

__m128 _mm_cmpunord_ps(__m128 a, __m128 b)

__m128 _mm_cmpnle_ps(__m128 a, __m128 b)

CMPSD __m128d _mm_cmpeq_sd(__m128d a, __m128d b)

__m128d _mm_cmplt_sd(__m128d a, __m128d b)

__m128d _mm_cmple_sd(__m128d a, __m128d b)

__m128d _mm_cmpgt_sd(__m128d a, __m128d b)

__m128d _mm_cmpge_sd(__m128d a, __m128d b)

__m128 _mm_cmpneq_sd(__m128d a, __m128d b)

__m128 _mm_cmpnlt_sd(__m128d a, __m128d b)

__m128d _mm_cmpnle_sd(__m128d a, __m128d b)

__m128d _mm_cmpngt_sd(__m128d a, __m128d b)

__m128d _mm_cmpnge_sd(__m128d a, __m128d b)

__m128d _mm_cmpord_sd(__m128d a, __m128d b)

__m128d _mm_cmpunord_sd(__m128d a, __m128d b)

CMPSS __m128 _mm_cmpeq_ss(__m128 a, __m128 b)

__m128 _mm_cmplt_ss(__m128 a, __m128 b)

__m128 _mm_cmple_ss(__m128 a, __m128 b)

__m128 _mm_cmpgt_ss(__m128 a, __m128 b)

__m128 _mm_cmpge_ss(__m128 a, __m128 b)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic

C-4 Vol. 2D

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

__m128 _mm_cmpneq_ss(__m128 a, __m128 b)

__m128 _mm_cmpnlt_ss(__m128 a, __m128 b)

__m128 _mm_cmpnle_ss(__m128 a, __m128 b)

__m128 _mm_cmpngt_ss(__m128 a, __m128 b)

__m128 _mm_cmpnge_ss(__m128 a, __m128 b)

__m128 _mm_cmpord_ss(__m128 a, __m128 b)

__m128 _mm_cmpunord_ss(__m128 a, __m128 b)

COMISD int _mm_comieq_sd(__m128d a, __m128d b)

int _mm_comilt_sd(__m128d a, __m128d b)

int _mm_comile_sd(__m128d a, __m128d b)

int _mm_comigt_sd(__m128d a, __m128d b)

int _mm_comige_sd(__m128d a, __m128d b)

int _mm_comineq_sd(__m128d a, __m128d b)

COMISS int _mm_comieq_ss(__m128 a, __m128 b)

int _mm_comilt_ss(__m128 a, __m128 b)

int _mm_comile_ss(__m128 a, __m128 b)

int _mm_comigt_ss(__m128 a, __m128 b)

int _mm_comige_ss(__m128 a, __m128 b)

int _mm_comineq_ss(__m128 a, __m128 b)

CRC32 unsigned int _mm_crc32_u8(unsigned int crc, unsigned char data)

unsigned int _mm_crc32_u16(unsigned int crc, unsigned short data)

unsigned int _mm_crc32_u32(unsigned int crc, unsigned int data)

unsigned __int64 _mm_crc32_u64(unsigned __int64 crc, unsigned __int64 data)

CVTDQ2PD __m128d _mm_cvtepi32_pd(__m128i a)

CVTDQ2PS __m128 _mm_cvtepi32_ps(__m128i a)

CVTPD2DQ __m128i _mm_cvtpd_epi32(__m128d a)

CVTPD2PI __m64 _mm_cvtpd_pi32(__m128d a)

CVTPD2PS __m128 _mm_cvtpd_ps(__m128d a)

CVTPI2PD __m128d _mm_cvtpi32_pd(__m64 a)

CVTPI2PS __m128 _mm_cvt_pi2ps(__m128 a, __m64 b)
__m128 _mm_cvtpi32_ps(__m128 a, __m64 b)

CVTPS2DQ __m128i _mm_cvtps_epi32(__m128 a)

CVTPS2PD __m128d _mm_cvtps_pd(__m128 a)

CVTPS2PI __m64 _mm_cvt_ps2pi(__m128 a)
__m64 _mm_cvtps_pi32(__m128 a)

CVTSD2SI int _mm_cvtsd_si32(__m128d a)

CVTSD2SS __m128 _mm_cvtsd_ss(__m128 a, __m128d b)

CVTSI2SD __m128d _mm_cvtsi32_sd(__m128d a, int b)

CVTSI2SS __m128 _mm_cvt_si2ss(__m128 a, int b)
__m128 _mm_cvtsi32_ss(__m128 a, int b)
__m128 _mm_cvtsi64_ss(__m128 a, __int64 b)

CVTSS2SD __m128d _mm_cvtss_sd(__m128d a, __m128 b)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic

Vol. 2D C-5

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

CVTSS2SI int _mm_cvt_ss2si(__m128 a)
int _mm_cvtss_si32(__m128 a)

CVTTPD2DQ __m128i _mm_cvttpd_epi32(__m128d a)

CVTTPD2PI __m64 _mm_cvttpd_pi32(__m128d a)

CVTTPS2DQ __m128i _mm_cvttps_epi32(__m128 a)

CVTTPS2PI __m64 _mm_cvtt_ps2pi(__m128 a)
__m64 _mm_cvttps_pi32(__m128 a)

CVTTSD2SI int _mm_cvttsd_si32(__m128d a)

CVTTSS2SI int _mm_cvtt_ss2si(__m128 a)
int _mm_cvttss_si32(__m128 a)

__m64 _mm_cvtsi32_si64(int i)

int _mm_cvtsi64_si32(__m64 m)

DIVPD __m128d _mm_div_pd(__m128d a, __m128d b)

DIVPS __m128 _mm_div_ps(__m128 a, __m128 b)

DIVSD __m128d _mm_div_sd(__m128d a, __m128d b)

DIVSS __m128 _mm_div_ss(__m128 a, __m128 b)

DPPD __m128d _mm_dp_pd(__m128d a, __m128d b, const int mask)

DPPS __m128 _mm_dp_ps(__m128 a, __m128 b, const int mask)

EMMS void _mm_empty()

EXTRACTPS int _mm_extract_ps(__m128 src, const int ndx)

HADDPD __m128d _mm_hadd_pd(__m128d a, __m128d b)

HADDPS __m128 _mm_hadd_ps(__m128 a, __m128 b)

HSUBPD __m128d _mm_hsub_pd(__m128d a, __m128d b)

HSUBPS __m128 _mm_hsub_ps(__m128 a, __m128 b)

INSERTPS __m128 _mm_insert_ps(__m128 dst, __m128 src, const int ndx)

LDDQU __m128i _mm_lddqu_si128(__m128i const *p)

LDMXCSR __mm_setcsr(unsigned int i)

LFENCE void _mm_lfence(void)

MASKMOVDQU void _mm_maskmoveu_si128(__m128i d, __m128i n, char *p)

MASKMOVQ void _mm_maskmove_si64(__m64 d, __m64 n, char *p)

MAXPD __m128d _mm_max_pd(__m128d a, __m128d b)

MAXPS __m128 _mm_max_ps(__m128 a, __m128 b)

MAXSD __m128d _mm_max_sd(__m128d a, __m128d b)

MAXSS __m128 _mm_max_ss(__m128 a, __m128 b)

MFENCE void _mm_mfence(void)

MINPD __m128d _mm_min_pd(__m128d a, __m128d b)

MINPS __m128 _mm_min_ps(__m128 a, __m128 b)

MINSD __m128d _mm_min_sd(__m128d a, __m128d b)

MINSS __m128 _mm_min_ss(__m128 a, __m128 b)

MONITOR void _mm_monitor(void const *p, unsigned extensions, unsigned hints)

MOVAPD __m128d _mm_load_pd(double * p)

void_mm_store_pd(double *p, __m128d a)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic

C-6 Vol. 2D

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

MOVAPS __m128 _mm_load_ps(float * p)

void_mm_store_ps(float *p, __m128 a)

MOVD __m128i _mm_cvtsi32_si128(int a)

int _mm_cvtsi128_si32(__m128i a)

__m64 _mm_cvtsi32_si64(int a)

int _mm_cvtsi64_si32(__m64 a)

MOVDDUP __m128d _mm_movedup_pd(__m128d a)

__m128d _mm_loaddup_pd(double const * dp)

MOVDQA __m128i _mm_load_si128(__m128i * p)

void_mm_store_si128(__m128i *p, __m128i a)

MOVDQU __m128i _mm_loadu_si128(__m128i * p)

void_mm_storeu_si128(__m128i *p, __m128i a)

MOVDQ2Q __m64 _mm_movepi64_pi64(__m128i a)

MOVHLPS __m128 _mm_movehl_ps(__m128 a, __m128 b)

MOVHPD __m128d _mm_loadh_pd(__m128d a, double * p)

void _mm_storeh_pd(double * p, __m128d a)

MOVHPS __m128 _mm_loadh_pi(__m128 a, __m64 * p)

void _mm_storeh_pi(__m64 * p, __m128 a)

MOVLPD __m128d _mm_loadl_pd(__m128d a, double * p)

void _mm_storel_pd(double * p, __m128d a)

MOVLPS __m128 _mm_loadl_pi(__m128 a, __m64 *p)

void_mm_storel_pi(__m64 * p, __m128 a)

MOVLHPS __m128 _mm_movelh_ps(__m128 a, __m128 b)

MOVMSKPD int _mm_movemask_pd(__m128d a)

MOVMSKPS int _mm_movemask_ps(__m128 a)

MOVNTDQA __m128i _mm_stream_load_si128(__m128i *p)

MOVNTDQ void_mm_stream_si128(__m128i * p, __m128i a)

MOVNTPD void_mm_stream_pd(double * p, __m128d a)

MOVNTPS void_mm_stream_ps(float * p, __m128 a)

MOVNTI void_mm_stream_si32(int * p, int a)

MOVNTQ void_mm_stream_pi(__m64 * p, __m64 a)

MOVQ __m128i _mm_loadl_epi64(__m128i * p)

void_mm_storel_epi64(_m128i * p, __m128i a)

__m128i _mm_move_epi64(__m128i a)

MOVQ2DQ __m128i _mm_movpi64_epi64(__m64 a)

MOVSD __m128d _mm_load_sd(double * p)

void_mm_store_sd(double * p, __m128d a)

__m128d _mm_move_sd(__m128d a, __m128d b)

MOVSHDUP __m128 _mm_movehdup_ps(__m128 a)

MOVSLDUP __m128 _mm_moveldup_ps(__m128 a)

MOVSS __m128 _mm_load_ss(float * p)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic

Vol. 2D C-7

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

void_mm_store_ss(float * p, __m128 a)

__m128 _mm_move_ss(__m128 a, __m128 b)

MOVUPD __m128d _mm_loadu_pd(double * p)

void_mm_storeu_pd(double *p, __m128d a)

MOVUPS __m128 _mm_loadu_ps(float * p)

void_mm_storeu_ps(float *p, __m128 a)

MPSADBW __m128i _mm_mpsadbw_epu8(__m128i s1, __m128i s2, const int mask)

MULPD __m128d _mm_mul_pd(__m128d a, __m128d b)

MULPS __m128 _mm_mul_ss(__m128 a, __m128 b)

MULSD __m128d _mm_mul_sd(__m128d a, __m128d b)

MULSS __m128 _mm_mul_ss(__m128 a, __m128 b)

MWAIT void _mm_mwait(unsigned extensions, unsigned hints)

ORPD __m128d _mm_or_pd(__m128d a, __m128d b)

ORPS __m128 _mm_or_ps(__m128 a, __m128 b)

PABSB __m64 _mm_abs_pi8 (__m64 a)

 __m128i _mm_abs_epi8 (__m128i a)

PABSD __m64 _mm_abs_pi32 (__m64 a)

 __m128i _mm_abs_epi32 (__m128i a)

PABSW __m64 _mm_abs_pi16 (__m64 a)

 __m128i _mm_abs_epi16 (__m128i a)

PACKSSWB __m128i _mm_packs_epi16(__m128i m1, __m128i m2)

PACKSSWB __m64 _mm_packs_pi16(__m64 m1, __m64 m2)

PACKSSDW __m128i _mm_packs_epi32 (__m128i m1, __m128i m2)

PACKSSDW __m64 _mm_packs_pi32 (__m64 m1, __m64 m2)

PACKUSDW __m128i _mm_packus_epi32(__m128i m1, __m128i m2)

PACKUSWB __m128i _mm_packus_epi16(__m128i m1, __m128i m2)

PACKUSWB __m64 _mm_packs_pu16(__m64 m1, __m64 m2)

PADDB __m128i _mm_add_epi8(__m128i m1, __m128i m2)

PADDB __m64 _mm_add_pi8(__m64 m1, __m64 m2)

PADDW __m128i _mm_add_epi16(__m128i m1, __m128i m2)

PADDW __m64 _mm_add_pi16(__m64 m1, __m64 m2)

PADDD __m128i _mm_add_epi32(__m128i m1, __m128i m2)

PADDD __m64 _mm_add_pi32(__m64 m1, __m64 m2)

PADDQ __m128i _mm_add_epi64(__m128i m1, __m128i m2)

PADDQ __m64 _mm_add_si64(__m64 m1, __m64 m2)

PADDSB __m128i _mm_adds_epi8(__m128i m1, __m128i m2)

PADDSB __m64 _mm_adds_pi8(__m64 m1, __m64 m2)

PADDSW __m128i _mm_adds_epi16(__m128i m1, __m128i m2)

PADDSW __m64 _mm_adds_pi16(__m64 m1, __m64 m2)

PADDUSB __m128i _mm_adds_epu8(__m128i m1, __m128i m2)

PADDUSB __m64 _mm_adds_pu8(__m64 m1, __m64 m2)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic

C-8 Vol. 2D

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

PADDUSW __m128i _mm_adds_epu16(__m128i m1, __m128i m2)

PADDUSW __m64 _mm_adds_pu16(__m64 m1, __m64 m2)

PALIGNR __m64 _mm_alignr_pi8 (__m64 a, __m64 b, int n)

 __m128i _mm_alignr_epi8 (__m128i a, __m128i b, int n)

PAND __m128i _mm_and_si128(__m128i m1, __m128i m2)

PAND __m64 _mm_and_si64(__m64 m1, __m64 m2)

PANDN __m128i _mm_andnot_si128(__m128i m1, __m128i m2)

PANDN __m64 _mm_andnot_si64(__m64 m1, __m64 m2)

PAUSE void _mm_pause(void)

PAVGB __m128i _mm_avg_epu8(__m128i a, __m128i b)

PAVGB __m64 _mm_avg_pu8(__m64 a, __m64 b)

PAVGW __m128i _mm_avg_epu16(__m128i a, __m128i b)

PAVGW __m64 _mm_avg_pu16(__m64 a, __m64 b)

PBLENDVB __m128i _mm_blendv_epi (__m128i v1, __m128i v2, __m128i mask)

PBLENDW __m128i _mm_blend_epi16(__m128i v1, __m128i v2, const int mask)

PCLMULQDQ __m128i _mm_clmulepi64_si128 (__m128i, __m128i, const int)

PCMPEQB __m128i _mm_cmpeq_epi8(__m128i m1, __m128i m2)

PCMPEQB __m64 _mm_cmpeq_pi8(__m64 m1, __m64 m2)

PCMPEQQ __m128i _mm_cmpeq_epi64(__m128i a, __m128i b)

PCMPEQW __m128i _mm_cmpeq_epi16 (__m128i m1, __m128i m2)

PCMPEQW __m64 _mm_cmpeq_pi16 (__m64 m1, __m64 m2)

PCMPEQD __m128i _mm_cmpeq_epi32(__m128i m1, __m128i m2)

PCMPEQD __m64 _mm_cmpeq_pi32(__m64 m1, __m64 m2)

PCMPESTRI int _mm_cmpestri (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode)

PCMPESTRM __m128i _mm_cmpestrm (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode)

PCMPGTB __m128i _mm_cmpgt_epi8 (__m128i m1, __m128i m2)

PCMPGTB __m64 _mm_cmpgt_pi8 (__m64 m1, __m64 m2)

PCMPGTW __m128i _mm_cmpgt_epi16(__m128i m1, __m128i m2)

PCMPGTW __m64 _mm_cmpgt_pi16 (__m64 m1, __m64 m2)

PCMPGTD __m128i _mm_cmpgt_epi32(__m128i m1, __m128i m2)

PCMPGTD __m64 _mm_cmpgt_pi32(__m64 m1, __m64 m2)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic

Vol. 2D C-9

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

PCMPISTRI __m128i _mm_cmpestrm (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpistrz (__m128i a, __m128i b, const int mode)

PCMPISTRM __m128i _mm_cmpistrm (__m128i a, __m128i b, const int mode)

int _mm_cmpistra (__m128i a, __m128i b, const int mode)

int _mm_cmpistrc (__m128i a, __m128i b, const int mode)

int _mm_cmpistro (__m128i a, __m128i b, const int mode)

int _mm_cmpistrs (__m128i a, __m128i b, const int mode)

int _mm_cmpistrz (__m128i a, __m128i b, const int mode)

PCMPGTQ __m128i _mm_cmpgt_epi64(__m128i a, __m128i b)

PEXTRB int _mm_extract_epi8 (__m128i src, const int ndx)

PEXTRD int _mm_extract_epi32 (__m128i src, const int ndx)

PEXTRQ __int64 _mm_extract_epi64 (__m128i src, const int ndx)

PEXTRW int _mm_extract_epi16(__m128i a, int n)

PEXTRW int _mm_extract_pi16(__m64 a, int n)

int _mm_extract_epi16 (__m128i src, int ndx)

PHADDD __m64 _mm_hadd_pi32 (__m64 a, __m64 b)

 __m128i _mm_hadd_epi32 (__m128i a, __m128i b)

PHADDSW __m64 _mm_hadds_pi16 (__m64 a, __m64 b)

 __m128i _mm_hadds_epi16 (__m128i a, __m128i b)

PHADDW __m64 _mm_hadd_pi16 (__m64 a, __m64 b)

__m128i _mm_hadd_epi16 (__m128i a, __m128i b)

PHMINPOSUW __m128i _mm_minpos_epu16(__m128i packed_words)

PHSUBD __m64 _mm_hsub_pi32 (__m64 a, __m64 b)

 __m128i _mm_hsub_epi32 (__m128i a, __m128i b)

PHSUBSW __m64 _mm_hsubs_pi16 (__m64 a, __m64 b)

 __m128i _mm_hsubs_epi16 (__m128i a, __m128i b)

PHSUBW __m64 _mm_hsub_pi16 (__m64 a, __m64 b)

 __m128i _mm_hsub_epi16 (__m128i a, __m128i b)

PINSRB __m128i _mm_insert_epi8(__m128i s1, int s2, const int ndx)

PINSRD __m128i _mm_insert_epi32(__m128i s2, int s, const int ndx)

PINSRQ __m128i _mm_insert_epi64(__m128i s2, __int64 s, const int ndx)

PINSRW __m128i _mm_insert_epi16(__m128i a, int d, int n)

PINSRW __m64 _mm_insert_pi16(__m64 a, int d, int n)

PMADDUBSW __m64 _mm_maddubs_pi16 (__m64 a, __m64 b)

 __m128i _mm_maddubs_epi16 (__m128i a, __m128i b)

PMADDWD __m128i _mm_madd_epi16(__m128i m1 __m128i m2)

PMADDWD __m64 _mm_madd_pi16(__m64 m1, __m64 m2)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic

C-10 Vol. 2D

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

PMAXSB __m128i _mm_max_epi8(__m128i a, __m128i b)

PMAXSD __m128i _mm_max_epi32(__m128i a, __m128i b)

PMAXSW __m128i _mm_max_epi16(__m128i a, __m128i b)

PMAXSW __m64 _mm_max_pi16(__m64 a, __m64 b)

PMAXUB __m128i _mm_max_epu8(__m128i a, __m128i b)

PMAXUB __m64 _mm_max_pu8(__m64 a, __m64 b)

PMAXUD __m128i _mm_max_epu32(__m128i a, __m128i b)

PMAXUW __m128i _mm_max_epu16(__m128i a, __m128i b)

PMINSB _m128i _mm_min_epi8(__m128i a, __m128i b)

PMINSD __m128i _mm_min_epi32(__m128i a, __m128i b)

PMINSW __m128i _mm_min_epi16(__m128i a, __m128i b)

PMINSW __m64 _mm_min_pi16(__m64 a, __m64 b)

PMINUB __m128i _mm_min_epu8(__m128i a, __m128i b)

PMINUB __m64 _mm_min_pu8(__m64 a, __m64 b)

PMINUD __m128i _mm_min_epu32 (__m128i a, __m128i b)

PMINUW __m128i _mm_min_epu16 (__m128i a, __m128i b)

PMOVMSKB int _mm_movemask_epi8(__m128i a)

PMOVMSKB int _mm_movemask_pi8(__m64 a)

PMOVSXBW __m128i _mm_ cvtepi8_epi16(__m128i a)

PMOVSXBD __m128i _mm_ cvtepi8_epi32(__m128i a)

PMOVSXBQ __m128i _mm_ cvtepi8_epi64(__m128i a)

PMOVSXWD __m128i _mm_ cvtepi16_epi32(__m128i a)

PMOVSXWQ __m128i _mm_ cvtepi16_epi64(__m128i a)

PMOVSXDQ __m128i _mm_ cvtepi32_epi64(__m128i a)

PMOVZXBW __m128i _mm_ cvtepu8_epi16(__m128i a)

PMOVZXBD __m128i _mm_ cvtepu8_epi32(__m128i a)

PMOVZXBQ __m128i _mm_ cvtepu8_epi64(__m128i a)

PMOVZXWD __m128i _mm_ cvtepu16_epi32(__m128i a)

PMOVZXWQ __m128i _mm_ cvtepu16_epi64(__m128i a)

PMOVZXDQ __m128i _mm_ cvtepu32_epi64(__m128i a)

PMULDQ __m128i _mm_mul_epi32(__m128i a, __m128i b)

PMULHRSW __m64 _mm_mulhrs_pi16 (__m64 a, __m64 b)

__m128i _mm_mulhrs_epi16 (__m128i a, __m128i b)

PMULHUW __m128i _mm_mulhi_epu16(__m128i a, __m128i b)

PMULHUW __m64 _mm_mulhi_pu16(__m64 a, __m64 b)

PMULHW __m128i _mm_mulhi_epi16(__m128i m1, __m128i m2)

PMULHW __m64 _mm_mulhi_pi16(__m64 m1, __m64 m2)

PMULLUD __m128i _mm_mullo_epi32(__m128i a, __m128i b)

PMULLW __m128i _mm_mullo_epi16(__m128i m1, __m128i m2)

PMULLW __m64 _mm_mullo_pi16(__m64 m1, __m64 m2)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic

Vol. 2D C-11

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

PMULUDQ __m64 _mm_mul_su32(__m64 m1, __m64 m2)

__m128i _mm_mul_epu32(__m128i m1, __m128i m2)

POPCNT int _mm_popcnt_u32(unsigned int a)

int64_t _mm_popcnt_u64(unsigned __int64 a)

POR __m64 _mm_or_si64(__m64 m1, __m64 m2)

POR __m128i _mm_or_si128(__m128i m1, __m128i m2)

PREFETCHh void _mm_prefetch(char *a, int sel)

PSADBW __m128i _mm_sad_epu8(__m128i a, __m128i b)

PSADBW __m64 _mm_sad_pu8(__m64 a, __m64 b)

PSHUFB __m64 _mm_shuffle_pi8 (__m64 a, __m64 b)

 __m128i _mm_shuffle_epi8 (__m128i a, __m128i b)

PSHUFD __m128i _mm_shuffle_epi32(__m128i a, int n)

PSHUFHW __m128i _mm_shufflehi_epi16(__m128i a, int n)

PSHUFLW __m128i _mm_shufflelo_epi16(__m128i a, int n)

PSHUFW __m64 _mm_shuffle_pi16(__m64 a, int n)

PSIGNB __m64 _mm_sign_pi8 (__m64 a, __m64 b)

 __m128i _mm_sign_epi8 (__m128i a, __m128i b)

PSIGND __m64 _mm_sign_pi32 (__m64 a, __m64 b)

 __m128i _mm_sign_epi32 (__m128i a, __m128i b)

PSIGNW __m64 _mm_sign_pi16 (__m64 a, __m64 b)

 __m128i _mm_sign_epi16 (__m128i a, __m128i b)

PSLLW __m128i _mm_sll_epi16(__m128i m, __m128i count)

PSLLW __m128i _mm_slli_epi16(__m128i m, int count)

PSLLW __m64 _mm_sll_pi16(__m64 m, __m64 count)

__m64 _mm_slli_pi16(__m64 m, int count)

PSLLD __m128i _mm_slli_epi32(__m128i m, int count)

__m128i _mm_sll_epi32(__m128i m, __m128i count)

PSLLD __m64 _mm_slli_pi32(__m64 m, int count)

__m64 _mm_sll_pi32(__m64 m, __m64 count)

PSLLQ __m64 _mm_sll_si64(__m64 m, __m64 count)

__m64 _mm_slli_si64(__m64 m, int count)

PSLLQ __m128i _mm_sll_epi64(__m128i m, __m128i count)

__m128i _mm_slli_epi64(__m128i m, int count)

PSLLDQ __m128i _mm_slli_si128(__m128i m, int imm)

PSRAW __m128i _mm_sra_epi16(__m128i m, __m128i count)

__m128i _mm_srai_epi16(__m128i m, int count)

PSRAW __m64 _mm_sra_pi16(__m64 m, __m64 count)

__m64 _mm_srai_pi16(__m64 m, int count)

PSRAD __m128i _mm_sra_epi32 (__m128i m, __m128i count)

__m128i _mm_srai_epi32 (__m128i m, int count)

PSRAD __m64 _mm_sra_pi32 (__m64 m, __m64 count)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic

C-12 Vol. 2D

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

__m64 _mm_srai_pi32 (__m64 m, int count)

PSRLW _m128i _mm_srl_epi16 (__m128i m, __m128i count)

__m128i _mm_srli_epi16 (__m128i m, int count)

__m64 _mm_srl_pi16 (__m64 m, __m64 count)

__m64 _mm_srli_pi16(__m64 m, int count)

PSRLD __m128i _mm_srl_epi32 (__m128i m, __m128i count)

__m128i _mm_srli_epi32 (__m128i m, int count)

PSRLD __m64 _mm_srl_pi32 (__m64 m, __m64 count)

__m64 _mm_srli_pi32 (__m64 m, int count)

PSRLQ __m128i _mm_srl_epi64 (__m128i m, __m128i count)

__m128i _mm_srli_epi64 (__m128i m, int count)

PSRLQ __m64 _mm_srl_si64 (__m64 m, __m64 count)

__m64 _mm_srli_si64 (__m64 m, int count)

PSRLDQ __m128i _mm_srli_si128(__m128i m, int imm)

PSUBB __m128i _mm_sub_epi8(__m128i m1, __m128i m2)

PSUBB __m64 _mm_sub_pi8(__m64 m1, __m64 m2)

PSUBW __m128i _mm_sub_epi16(__m128i m1, __m128i m2)

PSUBW __m64 _mm_sub_pi16(__m64 m1, __m64 m2)

PSUBD __m128i _mm_sub_epi32(__m128i m1, __m128i m2)

PSUBD __m64 _mm_sub_pi32(__m64 m1, __m64 m2)

PSUBQ __m128i _mm_sub_epi64(__m128i m1, __m128i m2)

PSUBQ __m64 _mm_sub_si64(__m64 m1, __m64 m2)

PSUBSB __m128i _mm_subs_epi8(__m128i m1, __m128i m2)

PSUBSB __m64 _mm_subs_pi8(__m64 m1, __m64 m2)

PSUBSW __m128i _mm_subs_epi16(__m128i m1, __m128i m2)

PSUBSW __m64 _mm_subs_pi16(__m64 m1, __m64 m2)

PSUBUSB __m128i _mm_subs_epu8(__m128i m1, __m128i m2)

PSUBUSB __m64 _mm_subs_pu8(__m64 m1, __m64 m2)

PSUBUSW __m128i _mm_subs_epu16(__m128i m1, __m128i m2)

PSUBUSW __m64 _mm_subs_pu16(__m64 m1, __m64 m2)

PTEST int _mm_testz_si128(__m128i s1, __m128i s2)

int _mm_testc_si128(__m128i s1, __m128i s2)

int _mm_testnzc_si128(__m128i s1, __m128i s2)

PUNPCKHBW __m64 _mm_unpackhi_pi8(__m64 m1, __m64 m2)

PUNPCKHBW __m128i _mm_unpackhi_epi8(__m128i m1, __m128i m2)

PUNPCKHWD __m64 _mm_unpackhi_pi16(__m64 m1,__m64 m2)

PUNPCKHWD __m128i _mm_unpackhi_epi16(__m128i m1, __m128i m2)

PUNPCKHDQ ___m64 _mm_unpackhi_pi32(__m64 m1, __m64 m2)

PUNPCKHDQ __m128i _mm_unpackhi_epi32(__m128i m1, __m128i m2)

PUNPCKHQDQ __m128i _mm_unpackhi_epi64(__m128i m1, __m128i m2)

PUNPCKLBW __m64 _mm_unpacklo_pi8 (__m64 m1, __m64 m2)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic

Vol. 2D C-13

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

PUNPCKLBW __m128i _mm_unpacklo_epi8 (__m128i m1, __m128i m2)

PUNPCKLWD __m64 _mm_unpacklo_pi16(__m64 m1, __m64 m2)

PUNPCKLWD __m128i _mm_unpacklo_epi16(__m128i m1, __m128i m2)

PUNPCKLDQ __m64 _mm_unpacklo_pi32(__m64 m1, __m64 m2)

PUNPCKLDQ __m128i _mm_unpacklo_epi32(__m128i m1, __m128i m2)

PUNPCKLQDQ __m128i _mm_unpacklo_epi64(__m128i m1, __m128i m2)

PXOR __m64 _mm_xor_si64(__m64 m1, __m64 m2)

PXOR __m128i _mm_xor_si128(__m128i m1, __m128i m2)

RCPPS __m128 _mm_rcp_ps(__m128 a)

RCPSS __m128 _mm_rcp_ss(__m128 a)

ROUNDPD __m128 mm_round_pd(__m128d s1, int iRoundMode)

__m128 mm_floor_pd(__m128d s1)

__m128 mm_ceil_pd(__m128d s1)

ROUNDPS __m128 mm_round_ps(__m128 s1, int iRoundMode)

__m128 mm_floor_ps(__m128 s1)

__m128 mm_ceil_ps(__m128 s1)

ROUNDSD __m128d mm_round_sd(__m128d dst, __m128d s1, int iRoundMode)

__m128d mm_floor_sd(__m128d dst, __m128d s1)

__m128d mm_ceil_sd(__m128d dst, __m128d s1)

ROUNDSS __m128 mm_round_ss(__m128 dst, __m128 s1, int iRoundMode)

__m128 mm_floor_ss(__m128 dst, __m128 s1)

__m128 mm_ceil_ss(__m128 dst, __m128 s1)

RSQRTPS __m128 _mm_rsqrt_ps(__m128 a)

RSQRTSS __m128 _mm_rsqrt_ss(__m128 a)

SFENCE void_mm_sfence(void)

SHUFPD __m128d _mm_shuffle_pd(__m128d a, __m128d b, unsigned int imm8)

SHUFPS __m128 _mm_shuffle_ps(__m128 a, __m128 b, unsigned int imm8)

SQRTPD __m128d _mm_sqrt_pd(__m128d a)

SQRTPS __m128 _mm_sqrt_ps(__m128 a)

SQRTSD __m128d _mm_sqrt_sd(__m128d a)

SQRTSS __m128 _mm_sqrt_ss(__m128 a)

STMXCSR _mm_getcsr(void)

SUBPD __m128d _mm_sub_pd(__m128d a, __m128d b)

SUBPS __m128 _mm_sub_ps(__m128 a, __m128 b)

SUBSD __m128d _mm_sub_sd(__m128d a, __m128d b)

SUBSS __m128 _mm_sub_ss(__m128 a, __m128 b)

UCOMISD int _mm_ucomieq_sd(__m128d a, __m128d b)

int _mm_ucomilt_sd(__m128d a, __m128d b)

int _mm_ucomile_sd(__m128d a, __m128d b)

int _mm_ucomigt_sd(__m128d a, __m128d b)

int _mm_ucomige_sd(__m128d a, __m128d b)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic

C-14 Vol. 2D

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

C.2 COMPOSITE INTRINSICS

int _mm_ucomineq_sd(__m128d a, __m128d b)

UCOMISS int _mm_ucomieq_ss(__m128 a, __m128 b)

int _mm_ucomilt_ss(__m128 a, __m128 b)

int _mm_ucomile_ss(__m128 a, __m128 b)

int _mm_ucomigt_ss(__m128 a, __m128 b)

int _mm_ucomige_ss(__m128 a, __m128 b)

int _mm_ucomineq_ss(__m128 a, __m128 b)

UNPCKHPD __m128d _mm_unpackhi_pd(__m128d a, __m128d b)

UNPCKHPS __m128 _mm_unpackhi_ps(__m128 a, __m128 b)

UNPCKLPD __m128d _mm_unpacklo_pd(__m128d a, __m128d b)

UNPCKLPS __m128 _mm_unpacklo_ps(__m128 a, __m128 b)

XORPD __m128d _mm_xor_pd(__m128d a, __m128d b)

XORPS __m128 _mm_xor_ps(__m128 a, __m128 b)

Table C-2. Composite Intrinsics
Mnemonic Intrinsic

(composite) __m128i _mm_set_epi64(__m64 q1, __m64 q0)

(composite) __m128i _mm_set_epi32(int i3, int i2, int i1, int i0)

(composite) __m128i _mm_set_epi16(short w7,short w6, short w5, short w4, short w3, short w2,
 short w1,short w0)

(composite) __m128i _mm_set_epi8(char w15,char w14, char w13, char w12, char w11, char w10,
 char w9, char w8, char w7,char w6, char w5, char w4, char w3, char w2,char w1, char w0)

(composite) __m128i _mm_set1_epi64(__m64 q)

(composite) __m128i _mm_set1_epi32(int a)

(composite) __m128i _mm_set1_epi16(short a)

(composite) __m128i _mm_set1_epi8(char a)

(composite) __m128i _mm_setr_epi64(__m64 q1, __m64 q0)

(composite) __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0)

(composite) __m128i _mm_setr_epi16(short w7,short w6, short w5, short w4, short w3, short w2, short w,
short w0)

(composite) __m128i _mm_setr_epi8(char w15,char w14, char w13, char w12, char w11, char w10,
char w9, char w8,char w7, char w6,char w5, char w4, char w3, char w2,char w1,char w0)

(composite) __m128i _mm_setzero_si128()

(composite) __m128 _mm_set_ps1(float w)
__m128 _mm_set1_ps(float w)

(composite) __m128cmm_set1_pd(double w)

(composite) __m128d _mm_set_sd(double w)

(composite) __m128d _mm_set_pd(double z, double y)

(composite) __m128 _mm_set_ps(float z, float y, float x, float w)

(composite) __m128d _mm_setr_pd(double z, double y)

(composite) __m128 _mm_setr_ps(float z, float y, float x, float w)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic

Vol. 2D C-15

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

(composite) __m128d _mm_setzero_pd(void)

(composite) __m128 _mm_setzero_ps(void)

MOVSD + shuffle __m128d _mm_load_pd(double * p)
__m128d _mm_load1_pd(double *p)

MOVSS + shuffle __m128 _mm_load_ps1(float * p)
__m128 _mm_load1_ps(float *p)

MOVAPD + shuffle __m128d _mm_loadr_pd(double * p)

MOVAPS + shuffle __m128 _mm_loadr_ps(float * p)

MOVSD + shuffle void _mm_store1_pd(double *p, __m128d a)

MOVSS + shuffle void _mm_store_ps1(float * p, __m128 a)
void _mm_store1_ps(float *p, __m128 a)

MOVAPD + shuffle _mm_storer_pd(double * p, __m128d a)

MOVAPS + shuffle _mm_storer_ps(float * p, __m128 a)

Table C-2. Composite Intrinsics (Contd.)
Mnemonic Intrinsic

C-16 Vol. 2D

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

Vol. 2D INDEX-1

INDEX

Numerics
0000, B-41
MADD, 5-218, 5-233
MSUB, 5-267, 5-283
64-bit mode

control and debug registers, 2-12
default operand size, 2-12
direct memory-offset MOVs, 2-11
general purpose encodings, B-18
immediates, 2-11
introduction, 2-7
machine instructions, B-1
reg (reg) field, B-4
REX prefixes, 2-7, B-2
RIP-relative addressing, 2-11
SIMD encodings, B-37
special instruction encodings, B-61
summary table notation, 3-8

A
AAA instruction, 3-19, 3-21
AAD instruction, 3-21
AAM instruction, 3-23
AAS instruction, 3-25
ADC instruction, 3-27, 3-619
ADD instruction, 3-19, 3-32, 3-322, 3-619
ADDPD instruction, 3-34
ADDPS- Add Packed Single Precision Floating-Point Values, 3-37
Addressing methods

RIP-relative, 2-11
ADDSD- Add Scalar Double Precision Floating-Point Values, 3-40
ADDSS- Add Scalar Single Precision Floating-Point Values, 3-42
ADDSUBPD instruction, 3-44
ADDSUBPS instruction, 3-46
ADOX — Unsigned Integer Addition of Two Operands with

Overflow Flag, 3-49
AESDEC128KL—Perform Ten Rounds of AES Decryption Flow

Using 128-Bit Key, 3-53
AESDEC256KL—Perform 14 Rounds of AES Decryption Flow Using

256-Bit Key, 3-55
AESDECLAST—Perform Last Round of an AES Decryption Flow,

3-57
AESDEC—Perform One Round of an AES Decryption Flow, 3-51
AESDECWIDE128KL—Perform Ten Rounds of AES Decryption

Flow on 8 Blocks with 128-Bit Key, 3-59
AESDECWIDE256KL—Perform 14 Rounds of AES Decryption Flow

on 8 Blocks with 256-Bit Key, 3-61
AESENC128KL—Perform Ten Rounds of AES Encryption Flow

Using 128-Bit Key, 3-65
AESENC256KL—Perform 14 Rounds of AES Encryption Flow Using

256-Bit Key, 3-67
AESENCLAST—Perform Last Round of an AES Encryption Flow,

3-69
AESENC—Perform One Round of an AES Encryption Flow, 3-63
AESENCWIDE128KL—Perform Ten Rounds of AES Encryption

Flow on 8 Blocks with 128-Bit Key, 3-71
AESENCWIDE256KL—Perform 14 Rounds of AES Encryption Flow

on 8 Blocks with 256-Bit Key, 3-73
AESIMC—Perform the AES InvMixColumn Transformation, 3-75
AESKEYGENASSIST - AES Round Key Generation Assist, 3-76
AND instruction, 3-78, 3-619
ANDNPS- Bitwise Logical AND NOT of Packed Single Precision

Floating-Point Values, 3-84

ANDPD- Bitwise Logical AND of Packed Double Precision
Floating-Point Values, 3-87

ANDPD instruction, 3-80
ANDPS- Bitwise Logical AND of Packed Single Precision

Floating-Point Values, 3-90
Architectural Performance Monitoring Extended Enumeration

Leaf, 3-242
Arctangent, x87 FPU operation, 3-421
ARPL instruction, 3-93
authenticated code execution mode, 7-3

B
Base (operand addressing), 2-3
BCD integers

packed, 3-322, 3-324, 3-371, 3-373
unpacked, 3-19, 3-21, 3-23, 3-25

BEXTR—Bit Field Extract, 3-95
BLENDPD — Blend Packed Double Precision Floating-Point Values,

3-96
BLENDPS — Blend Packed Single Precision Floating-Point Values,

3-98
BLSI-Extract Lowest Set Isolated Bit, 3-105
BLSMSK - Get Mask Up to Lowest Set Bit, 3-106
BLSR —Reset Lowest Set Bit, 3-107
BNDCL—Check Lower Bound, 3-108
BNDCU/BNDCN—Check Upper Bound, 3-110
BNDLDX—Load Extended Bounds Using Address Translation,

3-112
BNDMK—Make Bounds, 3-115
BNDMOV—Move Bounds, 3-117
BNDSTX—Store Extended Bounds Using Address Translation,

3-120
bootstrap processor, 7-16, 7-21, 7-29, 7-30
BOUND instruction, 3-123
BOUND range exceeded exception (#BR), 3-123
BOUND—Check Array Index Against Bounds, 3-123
Branch hints, 2-2
Brand information, 3-259

processor brand index, 3-261
processor brand string, 3-259

BSF instruction, 3-125
BSR instruction, 3-127
BSWAP instruction, 3-129
BT instruction, 3-130
BTC instruction, 3-132, 3-619
BTR instruction, 3-134, 3-619
BTS instruction, 3-136, 3-619
BZHI —Zero High Bits Starting with Specified Bit Position, 3-138

C
Cache and TLB information, 3-252
Cache Inclusiveness, 3-223
Caches, invalidating (flushing), 3-539, 6-3
CALL instruction, 3-139
GETSEC, 7-3
CBW instruction, 3-156
CDQ instruction, 3-321
CDQE instruction, 3-156
CF (carry) flag, EFLAGS register, 3-32, 3-130, 3-132, 3-134, 3-136,

3-158, 3-174, 3-326, 3-509, 3-514, 4-148, 4-532, 4-610,
4-637, 4-640, 4-682

CLC instruction, 3-158
CLD instruction, 3-159

INDEX

INDEX-2 Vol. 2D

CLFLUSH instruction, 3-162, 3-164
CPUID flag, 3-251

CLI instruction, 3-166
CLTS instruction, 3-170
CMC instruction, 3-174
CMOVcc flag, 3-251
CMOVcc instructions, 3-175

CPUID flag, 3-251
CMP instruction, 3-179
CMPPD- Compare Packed Double Precision Floating-Point Values,

3-186
CMPPS- Compare Packed Single Precision Floating-Point Values,

3-193
CMPS instruction, 3-199, 4-565
CMPSB instruction, 3-199
CMPSD- Compare Scalar Double Precision Floating-Point Values,

3-203
CMPSD instruction, 3-199
CMPSQ instruction, 3-199
CMPSS- Compare Scalar Single Precision Floating-Point Values,

3-207
CMPSW instruction, 3-199
CMPXCHG instruction, 3-212, 3-619
CMPXCHG16B instruction, 3-214

CPUID bit, 3-249
CMPXCHG8B instruction, 3-214

CPUID flag, 3-251
COMISD- Compare Scalar Ordered Double Precision Floating-Point

Values and Set EFLAGS, 3-217
COMISS- Compare Scalar Ordered Single Precision Floating-Point

Values and Set EFLAGS, 3-219
Compatibility mode

introduction, 2-7
see 64-bit mode
summary table notation, 3-9

Condition code flags, EFLAGS register, 3-175
Condition code flags, x87 FPU status word

flags affected by instructions, 3-15
setting, 3-457, 3-459, 3-462

Conditional jump, 3-555
Conforming code segment, 3-590
Constants (floating point), loading, 3-411
Control registers, moving values to and from, 4-39
Cosine, x87 FPU operation, 3-387, 3-439
CPL, 3-166, 5-166
CPUID instruction, 3-221, 3-251

36-bit page size extension, 3-251
APIC on-chip, 3-251
AVX256P Converged Vector ISA Information, 3-259
basic CPUID information, 3-222
cache and TLB characteristics, 3-222
CLFLUSH flag, 3-251
CLFLUSH instruction cache line size, 3-248
CMPXCHG16B flag, 3-249
CMPXCHG8B flag, 3-251
CPL qualified debug store, 3-249
debug extensions, CR4.DE, 3-251
debug store supported, 3-252
deterministic cache parameters leaf, 3-222, 3-225, 3-227, 3-228,

3-230, 3-231, 3-232, 3-233, 3-234, 3-235, 3-236, 3-241, 3-242,
3-243, 3-244

extended function information, 3-242, 3-243, 3-244
feature information, 3-250
FPU on-chip, 3-251
FSAVE flag, 3-252

FXRSTOR flag, 3-252
IA-32e mode available, 3-245
input limits for EAX, 3-246
L1 Context ID, 3-249
local APIC physical ID, 3-248
machine check architecture, 3-251
machine check exception, 3-251
memory type range registers, 3-251
MONITOR feature information, 3-256
MONITOR/MWAIT flag, 3-249
MONITOR/MWAIT leaf, 3-223, 3-224, 3-229, 3-230, 3-236, 3-242
MWAIT feature information, 3-256
page attribute table, 3-251
page size extension, 3-251
performance monitoring features, 3-257
physical address bits, 3-246
physical address extension, 3-251
power management, 3-256, 3-257, 3-258, 3-259
processor brand index, 3-248, 3-259
processor brand string, 3-245, 3-259
processor serial number, 3-222, 3-251
processor type field, 3-247
RDMSR flag, 3-251
returned in EBX, 3-248
returned in ECX & EDX, 3-248
self snoop, 3-252
SpeedStep technology, 3-249
SS2 extensions flag, 3-252
SSE extensions flag, 3-252
SSE3 extensions flag, 3-249
SSSE3 extensions flag, 3-249
SYSENTER flag, 3-251
SYSEXIT flag, 3-251
thermal management, 3-256, 3-257, 3-258, 3-259
thermal monitor, 3-249, 3-252
time stamp counter, 3-251
using CPUID, 3-221
vendor ID string, 3-246
version information, 3-222, 3-256
virtual 8086 Mode flag, 3-251
virtual address bits, 3-246
WRMSR flag, 3-251

CQO instruction, 3-321
CR0 control register, 4-656
CS register, 3-140, 3-524, 3-546, 3-561, 4-36, 4-397
CVTDQ2PD- Convert Packed Doubleword Integers to Packed

Double Precision Floating-Point Values, 3-272
CVTDQ2PD instruction, 3-269
CVTDQ2PS- Convert Packed Doubleword Integers to Packed

Single Precision Floating-Point Values, 3-275
CVTPD2DQ- Convert Packed Double Precision Floating-Point

Values to Packed Doubleword Integers, 3-278
CVTPD2PI instruction, 3-282
CVTPD2PS- Convert Packed Double Precision Floating-Point

Values to Packed Single Precision Floating-Point Values,
3-283

CVTPI2PD instruction, 3-287
CVTPI2PS instruction, 3-288
CVTPS2DQ- Convert Packed Single Precision Floating-Point Values

to Packed Signed Doubleword Integer Values, 3-289
CVTPS2PI instruction, 3-295
CVTSD2SI- Convert Scalar Double Precision Floating-Point Value

to Doubleword Integer, 3-296
CVTSI2SS- Convert Doubleword Integer to Scalar Single Precision

Floating-Point Value, 3-302

Vol. 2D INDEX-3

INDEX

CVTSS2SD- Convert Scalar Single Precision Floating-Point Value to
Scalar Double Precision Floating-Point Value, 3-304

CVTSS2SI- Convert Scalar Single Precision Floating-Point Value to
Doubleword Integer, 3-306

CVTTPD2DQ- Convert with Truncation Packed Double Precision
Floating-Point Values to Packed Doubleword Integers,
3-308

CVTTPD2PI instruction, 3-312
CVTTPS2DQ- Convert with Truncation Packed Single Precision

Floating-Point Values to Packed Signed Doubleword
Integer Values, 3-313

CVTTPS2PI instruction, 3-316
CVTTSD2SI- Convert with Truncation Scalar Double Precision

Floating-Point Value to Signed Integer, 3-317
CVTTSS2SI- Convert with Truncation Scalar Single Precision

Floating-Point Value to Integer, 3-319
CWD instruction, 3-321
CWDE instruction, 3-156
C/C++ compiler intrinsics

compiler functional equivalents, C-1
composite, C-14
description of, 3-12
lists of, C-1
simple, C-2

D
D (default operation size) flag, segment descriptor, 4-401
DAA instruction, 3-322
DAS instruction, 3-324
Debug registers, moving value to and from, 4-42
DEC instruction, 3-326, 3-619
Denormalized finite number, 3-462
Detecting and Enabling SMX

level 2, 7-1
DF (direction) flag, EFLAGS register, 3-159, 3-200, 3-521, 3-621,

4-112, 4-180, 4-613, 4-670
Displacement (operand addressing), 2-3
DIV instruction, 3-328
Divide error exception (#DE), 3-328
DIVPD- Divide Packed Double Precision Floating-Point Values,

3-331
DIVPS- Divide Packed Single Precision Floating-Point Values, 3-334
DIVSD- Divide Scalar Double Precision Floating-Point Values, 3-337
DIVSS- Divide Scalar Single Precision Floating-Point Values, 3-339
DS register, 3-199, 3-596, 3-621, 4-112, 4-180

E
EDI register, 4-613, 4-670, 4-674
Effective address, 3-603
EFLAGS register

condition codes, 3-177, 3-379, 3-384
flags affected by instructions, 3-14
popping, 4-405
popping on return from interrupt, 3-546
pushing, 4-526
pushing on interrupts, 3-524
saving, 4-599
status flags, 3-179, 3-558, 4-621, 4-714

EIP register, 3-140, 3-524, 3-546, 3-561
EMMS instruction, 3-346
ENCODEKEY128—Encode 128-Bit Key, 3-347
ENCODEKEY256—Encode 256-Bit Key, 3-349
Encodings

See machine instructions, opcodes
ENDBR32—Terminate an Indirect Branch in 32-bit and

Compatibility Mode, 3-351
ENTER instruction, 3-359
GETSEC, 7-3, 7-10
ES register, 3-596, 4-180, 4-613, 4-674
ESI register, 3-199, 3-621, 4-112, 4-180, 4-670
ESP register, 3-140
EVEX.R, 3-5
Exceptions

BOUND range exceeded (#BR), 3-123
overflow exception (#OF), 3-524
returning from, 3-546

GETSEC, 7-3, 7-5
Exponent, extracting from floating-point number, 3-477
Extract exponent and significand, x87 FPU operation, 3-477
EXTRACTPS- Extract packed floating-point values, 3-362

F
F2XM1 instruction, 3-364, 3-477
FABS instruction, 3-366
FADD instruction, 3-368
FADDP instruction, 3-368
Far pointer, loading, 3-596
Far return, RET instruction, 4-567
FBLD instruction, 3-371
FBSTP instruction, 3-373
FCHS instruction, 3-375
FCLEX instruction, 3-377
FCMOVcc instructions, 3-379
FCOM instruction, 3-381
FCOMI instruction, 3-384
FCOMIP instruction, 3-384
FCOMP instruction, 3-381
FCOMPP instruction, 3-381
FCOS instruction, 3-387
FDECSTP instruction, 3-389
FDIV instruction, 3-390
FDIVP instruction, 3-390
FDIVR instruction, 3-393
FDIVRP instruction, 3-393
Feature information, processor, 3-221
FFREE instruction, 3-396
FIADD instruction, 3-368
FICOM instruction, 3-397
FICOMP instruction, 3-397
FIDIV instruction, 3-390
FIDIVR instruction, 3-393
FILD instruction, 3-399
FIMUL instruction, 3-417
FINCSTP instruction, 3-401
FINIT instruction, 3-402
FINIT/FNINIT instructions, 3-432
FIST instruction, 3-404
FISTP instruction, 3-404
FISTTP instruction, 3-407
FISUB instruction, 3-451
FISUBR instruction, 3-454
FLD instruction, 3-409
FLD1 instruction, 3-411
FLDCW instruction, 3-413
FLDENV instruction, 3-415
FLDL2E instruction, 3-411
FLDL2T instruction, 3-411

INDEX

INDEX-4 Vol. 2D

FLDLG2 instruction, 3-411
FLDLN2 instruction, 3-411
FLDPI instruction, 3-411
FLDZ instruction, 3-411
Floating point instructions

machine encodings, B-61
Floating-point exceptions

SSE and SSE2 SIMD, 3-16, 3-17
x87 FPU, 3-16

Flushing
caches, 3-539, 6-3
TLB entry, 3-541

FMUL instruction, 3-417
FMULP instruction, 3-417
FNCLEX instruction, 3-377
FNINIT instruction, 3-402
FNOP instruction, 3-420
FNSAVE instruction, 3-432
FNSTCW instruction, 3-445
FNSTENV instruction, 3-415, 3-447
FNSTSW instruction, 3-449
FPATAN instruction, 3-421
FPREM instruction, 3-423
FPREM1 instruction, 3-425
FPTAN instruction, 3-427
FRNDINT instruction, 3-429
FRSTOR instruction, 3-430
FS register, 3-596
FSAVE instruction, 3-432
FSAVE/FNSAVE instructions, 3-430
FSCALE instruction, 3-435
FSIN instruction, 3-437
FSINCOS instruction, 3-439
FSQRT instruction, 3-441
FST instruction, 3-443
FSTCW instruction, 3-445
FSTENV instruction, 3-447
FSTP instruction, 3-443
FSTSW instruction, 3-449
FSUB instruction, 3-451
FSUBP instruction, 3-451
FSUBR instruction, 3-454
FSUBRP instruction, 3-454
FTST instruction, 3-457
FUCOM instruction, 3-459
FUCOMI instruction, 3-384
FUCOMIP instruction, 3-384
FUCOMP instruction, 3-459
FUCOMPP instruction, 3-459
FXAM instruction, 3-462
FXCH instruction, 3-464
FXRSTOR instruction, 3-466

CPUID flag, 3-252
FXSAVE instruction, 3-469, 5-780, 6-36, 6-49, 6-54, 6-58, 6-61, 6-64,

6-67, 6-70
CPUID flag, 3-252

FXTRACT instruction, 3-435, 3-477
FYL2X instruction, 3-479
FYL2XP1 instruction, 3-481

G
GDT (global descriptor table), 3-609, 3-612
GDTR (global descriptor table register), 3-609, 4-626
General-purpose instructions

64-bit encodings, B-18
non-64-bit encodings, B-7

General-purpose registers
moving value to and from, 4-36
popping all, 4-401
pushing all, 4-524

GETSEC, 7-1, 7-2, 7-5
GS register, 3-596

H
HADDPD instruction, 3-490, 3-491
HADDPS instruction, 3-493
HLT instruction, 3-496
HSUBPD instruction, 3-499
HSUBPS instruction, 3-502

I
IA-32e mode

CPUID flag, 3-245
introduction, 2-7, 2-13, 2-21, 2-36
see 64-bit mode
see compatibility mode

IDIV instruction, 3-505
IDT (interrupt descriptor table), 3-525, 3-609
IDTR (interrupt descriptor table register), 3-609, 4-652
IF (interrupt enable) flag, EFLAGS register, 3-166, 4-671
Immediate operands, 2-3
IMUL instruction, 3-508
IN instruction, 3-512
INC instruction, 3-514, 3-619
Index (operand addressing), 2-3
Initialization x87 FPU, 3-402
initiating logical processor, 7-4, 7-5, 7-10, 7-21, 7-22
INS instruction, 3-521, 4-561
INSB instruction, 3-521
INSD instruction, 3-521
INSERTPS- Insert Scalar Single Precision Floating-Point Value,

3-518
instruction encodings, B-58, B-64, B-70
Instruction format

base field, 2-3
description of reference information, 3-1
displacement, 2-3
immediate, 2-3
index field, 2-3
Mod field, 2-3
ModR/M byte, 2-3
opcode, 2-3
prefixes, 2-1
reg/opcode field, 2-3
r/m field, 2-3
scale field, 2-3
SIB byte, 2-3
See also: machine instructions, opcodes

Instruction reference, nomenclature, 3-1
Instruction set, reference, 3-1
INSW instruction, 3-521
INT 3 instruction, 3-524
Integer, storing, x87 FPU data type, 3-404
Intel 64 architecture

instruction format, 2-1
Intel® Trusted Execution Technology, 7-3
Inter-privilege level

Vol. 2D INDEX-5

INDEX

call, CALL instruction, 3-139
return, RET instruction, 4-567

Interrupts
returning from, 3-546
software, 3-524

INTn instruction, 3-524
INTO instruction, 3-524
Intrinsics

compiler functional equivalents, C-1
composite, C-14
description of, 3-12
list of, C-1
simple, C-2

INVD instruction, 3-539
INVLPG instruction, 3-541
IOPL (I/O privilege level) field, EFLAGS register, 3-166
IRET instruction, 3-546
IRETD instruction, 3-546

J
Jcc instructions, 3-555
JMP instruction, 3-560
Jump operation, 3-560

L
L1 Context ID, 3-249
LAHF instruction, 3-588
LAR instruction, 3-589
Last branch

interrupt & exception recording
description of, 4-582

LDDQU instruction, 3-593
LDMXCSR instruction, 3-595, 4-540, 6-7
LDS instruction, 3-596
LDT (local descriptor table), 3-612
LDTR (local descriptor table register), 3-612, 4-654
LEA instruction, 3-603
LEAVE instruction, 3-606
LES instruction, 3-596
LFENCE instruction, 3-608
LFS instruction, 3-596
LGDT instruction, 3-609
LGS instruction, 3-596
LIDT instruction, 3-609
LLDT instruction, 3-612
LMSW instruction, 3-614
Load effective address operation, 3-603
LOADIWKEY—Load Internal Wrapping Key, 3-616
LOCK prefix, 3-27, 3-32, 3-78, 3-132, 3-134, 3-136, 3-212, 3-326,

3-514, 3-619, 4-165, 4-168, 4-170, 4-611, 4-683, 6-27, 6-32,
6-40

Locking operation, 3-619
LODS instruction, 3-621, 4-561
LODSB instruction, 3-621
LODSD instruction, 3-621
LODSQ instruction, 3-621
LODSW instruction, 3-621
Log epsilon, x87 FPU operation, 3-479
Log (base 2), x87 FPU operation, 3-481
LOOP instructions, 3-624
LOOPcc instructions, 3-624
LSL instruction, 3-627
LSS instruction, 3-596

LTR instruction, 3-630
LZCNT - Count the Number of Leading Zero Bits, 3-632

M
Machine check architecture

CPUID flag, 3-251
description, 3-251

Machine instructions
64-bit mode, B-1
condition test (tttn) field, B-6
direction bit (d) field, B-6
floating-point instruction encodings, B-61
general description, B-1
general-purpose encodings, B-7–B-37
legacy prefixes, B-1
MMX encodings, B-38–B-41
opcode fields, B-2
operand size (w) bit, B-4
P6 family encodings, B-41
Pentium processor family encodings, B-37
reg (reg) field, B-3, B-4
REX prefixes, B-2
segment register (sreg) field, B-5
sign-extend (s) bit, B-5
SIMD 64-bit encodings, B-37
special 64-bit encodings, B-61
special fields, B-2
special-purpose register (eee) field, B-5
SSE encodings, B-42–B-47
SSE2 encodings, B-47–B-56
SSE3 encodings, B-57–B-58
SSSE3 encodings, B-58–B-60
VMX encodings, B-112–??, B-113
See also: opcodes

Machine status word, CR0 register, 3-614, 4-656
MASKMOVDQU instruction, 4-42
MAXPD- Maximum of Packed Double Precision Floating-Point

Values, 4-12
MAXPS- Maximum of Packed Single Precision Floating-Point

Values, 4-15
MAXSD- Return Maximum Scalar Double Precision Floating-Point

Value, 4-18
MAXSS- Return Maximum Scalar Single Precision Floating-Point

Value, 4-20
measured environment, 7-1
Measured Launched Environment, 7-1, 7-25
MFENCE instruction, 4-22
MINPD- Minimum of Packed Double Precision Floating-Point Values

, 4-23
MINPS- Minimum of Packed Single Precision Floating-Point Values

, 4-26
MINSD- Return Minimum Scalar Double Precision Floating-Point

Value, 4-29
MINSS- Return Minimum Scalar Single Precision Floating-Point

Value, 4-31
MLE, 7-1
MMX instructions

CPUID flag for technology, 3-252
encodings, B-38

Mod field, instruction format, 2-3
Model & family information, 3-256
ModR/M byte, 2-3

16-bit addressing forms, 2-5
32-bit addressing forms of, 2-6

INDEX

INDEX-6 Vol. 2D

description of, 2-3
MONITOR instruction, 4-33

CPUID flag, 3-249
feature data, 3-256

MOV instruction, 4-35
MOV instruction (control registers), 4-39, 4-58, 4-60
MOV instruction (debug registers), 4-42, 4-52
MOVAPD- Move Aligned Packed Double Precision Floating-Point

Values, 4-44
MOVAPS- Move Aligned Packed Single Precision Floating-Point

Values, 4-48
MOVD instruction, 4-52
MOVDDUP- Replicate Double FP Values, 4-55
MOVDQ2Q instruction, 4-66
MOVDQA- Move Aligned Packed Integer Values, 4-67
MOVDQU- Move Unaligned Packed Integer Values, 4-72
MOVHLPS - Move Packed Single Precision Floating-Point Values

High to Low, 4-80
MOVHPD- Move High Packed Double Precision Floating-Point

Values, 4-82
MOVHPS- Move High Packed Single Precision Floating-Point

Values, 4-84
MOVLPD- Move Low Packed Double Precision Floating-Point

Values, 4-88
MOVLPS- Move Low Packed Single Precision Floating-Point Values

, 4-90
MOVMSKPD instruction, 4-92
MOVMSKPS instruction, 4-94
MOVNTDQ instruction, 4-111
MOVNTDQ- Store Packed Integers Using Non-Temporal Hint, 4-96
MOVNTI instruction, 4-111
MOVNTPD- Store Packed Double Precision Floating-Point Values

Using Non-Temporal Hint, 4-102
MOVNTPS- Store Packed Single Precision Floating-Point Values

Using Non-Temporal Hint, 4-104
MOVNTQ instruction, 4-106
MOVQ instruction, 4-52, 4-107
MOVQ2DQ instruction, 4-110
MOVS instruction, 4-112, 4-561
MOVSB instruction, 4-112
MOVSD instruction, 4-112
MOVSD- Move or Merge Scalar Double Precision Floating-Point

Value, 4-116
MOVSHDUP- Replicate Single FP Values, 4-119
MOVSLDUP- Replicate Single FP Values, 4-122
MOVSQ instruction, 4-112
MOVSS- Move or Merge Scalar Single Precision Floating-Point

Value, 4-125
MOVSW instruction, 4-112
MOVSX instruction, 4-128
MOVSXD instruction, 4-128
MOVUPD- Move Unaligned Packed Double Precision Floating-Point

Values, 4-130
MOVUPS- Move Unaligned Packed Single Precision Floating-Point

Values, 4-134
MOVZX instruction, 4-138
MSRs (model specific registers)

reading, 4-542
MUL instruction, 3-23, 4-148
MULPD- Multiply Packed Double Precision Floating-Point Values,

4-150
MULPS- Multiply Packed Single Precision Floating-Point Values,

4-153
MULSD- Multiply Scalar Double Precision Floating-Point Values,

4-156

MULSS- Multiply Scalar Single Precision Floating-Point Values,
4-158

Multi-byte no operation, 4-165, 4-167, B-13
MULX - Unsigned Multiply Without Affecting Flags, 4-160
MVMM, 7-1, 7-5, 7-37
MWAIT instruction, 4-162

CPUID flag, 3-249
feature data, 3-256

N
NaN. testing for, 3-457
Near

return, RET instruction, 4-567
NEG instruction, 3-619, 4-165
NetBurst microarchitecture (see Intel NetBurst microarchitecture)
No operation, 4-165, 4-167, B-12
Nomenclature, used in instruction reference pages, 3-1
NOP instruction, 4-167
NOT instruction, 3-619, 4-168
NT (nested task) flag, EFLAGS register, 3-546

O
OF (carry) flag, EFLAGS register, 3-509
OF (overflow) flag, EFLAGS register, 3-32, 3-524, 4-148, 4-611,

4-637, 4-640, 4-682
Opcode format, 2-3
Opcodes

addressing method codes for, A-1
extensions, A-17
extensions tables, A-18
group numbers, A-17
integers

one-byte opcodes, A-7
two-byte opcodes, A-7

key to abbreviations, A-1
look-up examples, A-3, A-17, A-20
ModR/M byte, A-17
one-byte opcodes, A-3, A-7
opcode maps, A-1
operand type codes for, A-2
register codes for, A-3
superscripts in tables, A-6
two-byte opcodes, A-4, A-5, A-7
VMX instructions, B-112, B-113
x87 ESC instruction opcodes, A-20

OR instruction, 3-619, 4-170
ORPD, 4-172
ORPS- Bitwise Logical OR of Packed Single Precision Floating-Point

Values, 4-175
OUT instruction, 4-178
OUTS instruction, 4-180, 4-561
OUTSB instruction, 4-180
OUTSD instruction, 4-180
OUTSW instruction, 4-180
Overflow exception (#OF), 3-524

P
P6 family processors

machine encodings, B-41
PABSB instruction, 4-184, 4-198, 5-158, 5-578, 5-589, 5-604
PABSD instruction, 4-184, 4-198, 5-158, 5-578, 5-589, 5-604
PABSW instruction, 4-184, 4-198, 5-158, 5-578, 5-589, 5-604
PACKSSDW instruction, 4-190

Vol. 2D INDEX-7

INDEX

PACKSSWB instruction, 4-190
PACKUSWB instruction, 4-203
PADDB/PADDW/PADDD/PADDQ - Add Packed Integers, 4-208
PADDSB instruction, 4-215
PADDSW instruction, 4-215
PADDUSB instruction, 4-219
PADDUSW instruction, 4-219
PALIGNR instruction, 4-223
PAND instruction, 4-227
PANDN instruction, 4-230
GETSEC, 7-4
PAUSE instruction, 4-233
PAVGB instruction, 4-234
PAVGW instruction, 4-234
PCE flag, CR4 register, 4-549
PCMPEQB instruction, 4-248
PCMPEQD instruction, 4-248
PCMPEQW instruction, 4-248
PCMPGTB instruction, 4-261
PCMPGTD instruction, 4-261
PCMPGTW instruction, 4-261
PDEP - Parallel Bits Deposit, 4-280
PE (protection enable) flag, CR0 register, 3-614
Pending break enable, 3-252
Pentium processor family processors

machine encodings, B-37
Performance-monitoring counters

CPUID inquiry for, 3-257
PEXT - Parallel Bits Extract, 4-282
PEXTRW instruction, 4-287
PHADDD instruction, 4-292
PHADDSW instruction, 4-290
PHADDW instruction, 4-292
PH—Fused Multiply-Add of Packed FP16 Values, 5-218
PH—Fused Multiply-Subtract of Packed FP16 Values, 5-267
PHSUBD instruction, 4-300
PHSUBSW instruction, 4-298
PHSUBW instruction, 4-300
Pi, 3-411
PINSRW instruction, 4-306, 4-435
PMADDUBSW instruction, 4-308
PMADDUDSW instruction, 4-308
PMADDWD instruction, 4-311
PMULHRSW instruction, 4-373
PMULHUW instruction, 4-377
PMULHW instruction, 4-381
PMULLW instruction, 4-389
PMULUDQ instruction, 4-393
POP instruction, 4-396
POPA instruction, 4-401
POPAD instruction, 4-401
POPF instruction, 4-405
POPFD instruction, 4-405
POPFQ instruction, 4-405
POR instruction, 4-409
PREFETCHh instruction, 4-412
PREFETCHWT1—Prefetch Vector Data Into Caches with Intent to

Write and T1 Hint, 4-416
Prefixes

Address-size override prefix, 2-2
Branch hints, 2-2
branch hints, 2-2
instruction, description of, 2-1
legacy prefix encodings, B-1
LOCK, 2-1, 3-619

Operand-size override prefix, 2-2
REP or REPE/REPZ, 2-1
REPNE/REPNZ, 2-1
REP/REPE/REPZ/REPNE/REPNZ, 4-561, 4-563, 4-565
REX prefix encodings, B-2
Segment override prefixes, 2-2

PSADBW instruction, 4-416
PSHUFB instruction, 4-420
PSHUFD instruction, 4-424
PSHUFHW instruction, 4-428
PSHUFLW instruction, 4-431
PSHUFW instruction, 4-434
PSIGNB instruction, 4-435
PSIGND instruction, 4-435
PSIGNW instruction, 4-435
PSLLD instruction, 4-441
PSLLDQ instruction, 4-439
PSLLQ instruction, 4-441
PSLLW instruction, 4-441
PSRAD instruction, 4-453
PSRAW instruction, 4-453
PSRLD instruction, 4-465
PSRLDQ instruction, 4-463
PSRLQ instruction, 4-465
PSRLW instruction, 4-465
PSUBB instruction, 4-477
PSUBD instruction, 4-477
PSUBQ instruction, 4-485
PSUBSB instruction, 4-488
PSUBSW instruction, 4-488
PSUBUSB instruction, 4-492
PSUBUSW instruction, 4-492
PSUBW instruction, 4-477
PTEST- Packed Bit Test, 3-583
PUNPCKHBW instruction, 4-500
PUNPCKHDQ instruction, 4-500
PUNPCKHQDQ instruction, 4-500
PUNPCKHWD instruction, 4-500
PUNPCKLBW instruction, 4-510
PUNPCKLDQ instruction, 4-510
PUNPCKLQDQ instruction, 4-510
PUNPCKLWD instruction, 4-510
PUSH instruction, 4-520
PUSHA instruction, 4-524
PUSHAD instruction, 4-524
PUSHF instruction, 4-526
PUSHFD instruction, 4-526
PXOR instruction, 4-528

R
RC (rounding control) field, x87 FPU control word, 3-404, 3-411,

3-443
RCL instruction, 4-531
RCPPS instruction, 4-536
RCPSS instruction, 4-538
RCR instruction, 4-531
RDMSR instruction, 4-542, 4-544, 4-557

CPUID flag, 3-251
RDPMC instruction, 4-547, 4-549, 6-15
RDTSC instruction, 4-552, 4-557, 4-559
Reg/opcode field, instruction format, 2-3
Remainder, x87 FPU operation, 3-425
REP/REPE/REPZ/REPNE/REPNZ prefixes, 3-200, 3-522, 4-180,

4-561, 4-563, 4-565

INDEX

INDEX-8 Vol. 2D

Responding logical processor, 7-4
responding logical processor, 7-4, 7-5
RET instruction, 4-567
REX prefixes

addressing modes, 2-9
and INC/DEC, 2-8
encodings, 2-8, B-2
field names, 2-9
ModR/M byte, 2-8
overview, 2-7
REX.B, 2-8
REX.R, 2-8
REX.W, 2-8
special encodings, 2-10

RIP-relative addressing, 2-11
ROL instruction, 4-531
ROR instruction, 4-531
RORX - Rotate Right Logical Without Affecting Flags, 4-580
Rounding

modes, floating-point operations, 4-582
Rounding control (RC) field

MXCSR register, 4-582
x87 FPU control word, 4-582

Rounding, round to integer, x87 FPU operation, 3-429
RPL field, 3-93
RSM instruction, 4-590
RSQRTPS instruction, 4-592
RSQRTSS instruction, 4-594
R/m field, instruction format, 2-3

S
Safer Mode Extensions, 7-1
SAHF instruction, 4-599
SAL instruction, 4-601
SAR instruction, 4-601
SBB instruction, 3-619, 4-610
Scale (operand addressing), 2-3
Scale, x87 FPU operation, 3-435
Scan string instructions, 4-613
SCAS instruction, 4-565, 4-613
SCASB instruction, 4-613
SCASD instruction, 4-613
SCASW instruction, 4-613
Segment

descriptor, segment limit, 3-627
limit, 3-627
registers, moving values to and from, 4-36
selector, RPL field, 3-93

Self Snoop, 3-252
GETSEC, 7-2, 7-4, 7-5
SENTER sleep state, 7-10
SETcc instructions, 4-620
GETSEC, 7-4
SF (sign) flag, EFLAGS register, 3-32
SFENCE instruction, 4-625
SGDT instruction, 4-626
SHAF instruction, 4-599
SH—Fused Multiply-Add of Scalar FP16 Values, 5-233
SH—Fused Multiply-Subtract of Scalar FP16 Values, 5-283
Shift instructions, 4-601
SHL instruction, 4-601
SHLD instruction, 4-637
SHR instruction, 4-601
SHRD instruction, 4-640

SHUFPD - Shuffle Packed Double Precision Floating-Point Values,
4-643, 4-684

SHUFPS - Shuffle Packed Single Precision Floating-Point Values,
4-648

SIB byte, 2-3
32-bit addressing forms of, 2-7, 2-21
description of, 2-3

SIDT instruction, 4-626, 4-652
Significand, extracting from floating-point number, 3-477
SIMD floating-point exceptions, unmasking, effects of, 3-595,

4-540, 6-7
Sine, x87 FPU operation, 3-437, 3-439
SINIT, 7-4
SLDT instruction, 4-654
GETSEC, 7-4
SMSW instruction, 4-656
SpeedStep technology, 3-249
SQRTPD—Square Root of Double Precision Floating-Point Values,

4-658
SQRTPS- Square Root of Single Precision Floating-Point Values,

4-661
SQRTSD - Compute Square Root of Scalar Double Precision

Floating-Point Value, 4-664
SQRTSS - Compute Square Root of Scalar Single Precision

Floating-Point Value, 4-666
Square root, Fx87 PU operation, 3-441
SS register, 3-596, 4-36, 4-397
SSE extensions

cacheability instruction encodings, B-47
CPUID flag, 3-252
floating-point encodings, B-42
instruction encodings, B-42
integer instruction encodings, B-46
memory ordering encodings, B-47

SSE2 extensions
cacheability instruction encodings, B-56
CPUID flag, 3-252
floating-point encodings, B-48
integer instruction encodings, B-52

SSE3
CPUID flag, 3-249

SSE3 extensions
CPUID flag, 3-249
event mgmt instruction encodings, B-57
floating-point instruction encodings, B-57
integer instruction encodings, B-57, B-58

SSSE3 extensions, B-58, B-64, B-70
CPUID flag, 3-249

Stack, pushing values on, 4-520
Status flags, EFLAGS register, 3-177, 3-179, 3-379, 3-384, 3-558,

4-621, 4-714
STC instruction, 4-669
STD instruction, 4-670
Stepping information, 3-256
STI instruction, 4-671
STMXCSR instruction, 4-673
STOS instruction, 4-561, 4-674
STOSB instruction, 4-674
STOSD instruction, 4-674
STOSQ instruction, 4-674
STOSW instruction, 4-674
STR instruction, 4-677
String instructions, 3-199, 3-521, 3-621, 4-112, 4-180, 4-613, 4-674
SUB instruction, 3-25, 3-324, 3-619, 4-682

Vol. 2D INDEX-9

INDEX

SUBPD- Subtract Packed Double Precision Floating-Point Values,
4-684

SUBPS- Subtract Packed Single Precision Floating-Point Values,
4-687

SUBSD- Subtract Scalar Double Precision Floating-Point Values,
4-690

SUBSS- Subtract Scalar Single Precision Floating-Point Values,
4-692

SWAPGS instruction, 4-694
SYSCALL instruction, 4-696
SYSENTER instruction, 4-699

CPUID flag, 3-251
SYSEXIT instruction, 4-702

CPUID flag, 3-251
SYSRET instruction, 4-705

T
Tangent, x87 FPU operation, 3-427
Task register

loading, 3-630
storing, 4-677

Task switch
CALL instruction, 3-139
return from nested task, IRET instruction, 3-546

TEST instruction, 4-714, 5-775
Thermal Monitor

CPUID flag, 3-252
Thermal Monitor 2, 3-249

CPUID flag, 3-249
Time Stamp Counter, 3-251
Time-stamp counter, reading, 4-557, 4-559
TLB entry, invalidating (flushing), 3-541
Trusted Platform Module, 7-5
TS (task switched) flag, CR0 register, 3-170
TSS, relationship to task register, 4-677
TZCNT - Count the Number of Trailing Zero Bits, 4-724

U
UCOMISD - Unordered Compare Scalar Double Precision

Floating-Point Values and Set EFLAGS, 4-726
UCOMISD instruction, 4-724
UCOMISS - Unordered Compare Scalar Single Precision

Floating-Point Values and Set EFLAGS, 4-728
UD2 instruction, 4-730
Undefined, format opcodes, 3-457
Unordered values, 3-381, 3-457, 3-459
UNPCKHPD- Unpack and Interleave High Packed Double Precision

Floating-Point Values, 4-737
UNPCKHPS- Unpack and Interleave High Packed Single Precision

Floating-Point Values, 4-741
UNPCKLPD- Unpack and Interleave Low Packed Double Precision

Floating-Point Values, 4-745
UNPCKLPS- Unpack and Interleave Low Packed Single Precision

Floating-Point Values, 4-749

V
VADDPH—Add Packed FP16 Values, 5-5
VADDSH—Add Scalar FP16 Values, 5-7
VALIGND/VALIGNQ—Align Doubleword/Quadword Vectors, 5-8
VBLENDMPD/VBLENDMPS—Blend Float64/Float32 Vectors Using

an OpMask Control, 5-13
VBROADCAST—Load with Broadcast Floating-Point Data, 5-16
VCMPPH—Compare Packed FP16 Values, 5-24

VCMPSH—Compare Scalar FP16 Values, 5-26
VCOMISH—Compare Scalar Ordered FP16 Values and Set EFLAGS,

5-28
VCOMPRESSPD—Store Sparse Packed Double Precision

Floating-Point Values Into Dense Memory, 5-30
VCOMPRESSPS—Store Sparse Packed Single Precision

Floating-Point Values Into Dense Memory, 5-32
VCVTDQ2PH—Convert Packed Signed Doubleword Integers to

Packed FP16 Values, 5-34
VCVTNE2PS2BF16—Convert Two Packed Single Data to One

Packed BF16 Data, 5-36
VCVTNEPS2BF16—Convert Packed Single Data to Packed BF16

Data, 5-42
VCVTPD2PH—Convert Packed Double Precision FP Values to

Packed FP16 Values, 5-44
VCVTPD2QQ—Convert Packed Double Precision Floating-Point

Values to Packed Quadword Integers, 5-46
VCVTPD2UDQ—Convert Packed Double Precision Floating-Point

Values to Packed Unsigned Doubleword Integers, 5-48
VCVTPD2UQQ—Convert Packed Double Precision Floating-Point

Values to Packed Unsigned Quadword Integers, 5-51
VCVTPH2DQ—Convert Packed FP16 Values to Signed Doubleword

Integers, 5-54
VCVTPH2PD—Convert Packed FP16 Values to FP64 Values, 5-56
VCVTPH2QQ—Convert Packed FP16 Values to Signed Quadword

Integer Values, 5-62
VCVTPH2UDQ—Convert Packed FP16 Values to Unsigned

Doubleword Integers, 5-64
VCVTPH2UQQ—Convert Packed FP16 Values to Unsigned

Quadword Integers, 5-66
VCVTPH2UW—Convert Packed FP16 Values to Unsigned Word

Integers, 5-68
VCVTPH2W—Convert Packed FP16 Values to Signed Word

Integers, 5-70
VCVTPS2PH—Convert Single Precision FP Value to 16-bit FP

Value, 5-72
VCVTPS2PHX—Convert Packed Single Precision Floating-Point

Values to Packed FP16 Values, 5-76
VCVTPS2UDQ—Convert Packed Single Precision Floating-Point

Values to Packed Unsigned Doubleword Integer Values,
5-80

VCVTPS2UQQ—Convert Packed Single Precision Floating-Point
Values to Packed Unsigned Quadword Integer Values,
5-83

VCVTQQ2PD—Convert Packed Quadword Integers to Packed
Double Precision Floating-Point Values, 5-85

VCVTQQ2PH—Convert Packed Signed Quadword Integers to
Packed FP16 Values, 5-87

VCVTQQ2PS—Convert Packed Quadword Integers to Packed
Single Precision Floating-Point Values, 5-89

VCVTSD2SH—Convert Low FP64 Value to an FP16 Value, 5-91
VCVTSD2USI—Convert Scalar Double Precision Floating-Point

Value to Unsigned Doubleword Integer, 5-92
VCVTSH2SD—Convert Low FP16 Value to an FP64 Value, 5-94
VCVTSH2SI—Convert Low FP16 Value to Signed Integer, 5-95
VCVTSH2SS—Convert Low FP16 Value to FP32 Value, 5-97
VCVTSH2USI—Convert Low FP16 Value to Unsigned Integer, 5-98
VCVTSI2SH—Convert a Signed Doubleword/Quadword Integer to

an FP16 Value, 5-100
VCVTSS2SH—Convert Low FP32 Value to an FP16 Value, 5-102
VCVTSS2USI—Convert Scalar Single Precision Floating-Point

Value to Unsigned Doubleword Integer, 5-103
VCVTTPD2QQ—Convert With Truncation Packed Double Precision

Floating-Point Values to Packed Quadword Integers,
5-105

INDEX

INDEX-10 Vol. 2D

VCVTTPD2UDQ—Convert With Truncation Packed Double
Precision Floating-Point Values to Packed Unsigned
Doubleword Integers, 5-107

VCVTTPD2UQQ—Convert With Truncation Packed Double
Precision Floating-Point Values to Packed Unsigned
Quadword Integers, 5-109

VCVTTPH2DQ—Convert with Truncation Packed FP16 Values to
Signed Doubleword Integers, 5-111

VCVTTPH2QQ—Convert with Truncation Packed FP16 Values to
Signed Quadword Integers, 5-113

VCVTTPH2UDQ—Convert with Truncation Packed FP16 Values to
Unsigned Doubleword Integers, 5-115

VCVTTPH2UQQ—Convert with Truncation Packed FP16 Values to
Unsigned Quadword Integers, 5-117

VCVTTPH2UW—Convert Packed FP16 Values to Unsigned Word
Integers, 5-119

VCVTTPH2W—Convert Packed FP16 Values to Signed Word
Integers, 5-121

VCVTTPS2QQ—Convert With Truncation Packed Single Precision
Floating-Point Values to Packed Signed Quadword
Integer Values, 5-127

VCVTTPS2UDQ—Convert With Truncation Packed Single Precision
Floating-Point Values to Packed Unsigned Doubleword
Integer Values, 5-125

VCVTTPS2UQQ—Convert With Truncation Packed Single Precision
Floating-Point Values to Packed Unsigned Quadword
Integer Values, 5-127

VCVTTSD2USI—Convert With Truncation Scalar Double Precision
Floating-Point Value to Unsigned Integer, 5-129

VCVTTSH2SI—Convert with Truncation Low FP16 Value to a
Signed Integer, 5-131

VCVTTSH2USI—Convert with Truncation Low FP16 Value to an
Unsigned Integer, 5-132

VCVTTSS2USI—Convert With Truncation Scalar Single Precision
Floating-Point Value to Unsigned Integer, 5-133

VCVTUDQ2PD—Convert Packed Unsigned Doubleword Integers to
Packed Double Precision Floating-Point Values, 5-135

VCVTUDQ2PH—Convert Packed Unsigned Doubleword Integers to
Packed FP16 Values, 5-137

VCVTUDQ2PS—Convert Packed Unsigned Doubleword Integers to
Packed Single Precision Floating-Point Values, 5-139

VCVTUQQ2PD—Convert Packed Unsigned Quadword Integers to
Packed Double Precision Floating-Point Values, 5-142

VCVTUQQ2PH—Convert Packed Unsigned Quadword Integers to
Packed FP16 Values, 5-144

VCVTUQQ2PS—Convert Packed Unsigned Quadword Integers to
Packed Single Precision Floating-Point Values, 5-146

VCVTUSI2SD—Convert Unsigned Integer to Scalar Double
Precision Floating-Point Value, 5-148

VCVTUSI2SH—Convert Unsigned Doubleword Integer to an FP16
Value, 5-150

VCVTUSI2SS—Convert Unsigned Integer to Scalar Single Precision
Floating-Point Value, 5-152

VCVTUW2PH—Convert Packed Unsigned Word Integers to FP16
Values, 5-154

VCVTW2PH—Convert Packed Signed Word Integers to FP16
Values, 5-156

VDBPSADBW—Double Block Packed Sum-Absolute-Differences
(SAD) on Unsigned Bytes, 5-158

VDIVPH—Divide Packed FP16 Values, 5-161
VDIVSH—Divide Scalar FP16 Values, 5-163
VDPBF16PS—Dot Product of BF16 Pairs Accumulated Into Packed

Single Precision, 5-164
VERR instruction, 5-166
VERR/VERW—Verify a Segment for Reading or Writing, 5-172

Version information, processor, 3-221
VERW instruction, 5-166
VEX, 3-3
VEXPANDPD—Load Sparse Packed Double Precision

Floating-Point Values From Dense Memory, 5-168
VEXPANDPS—Load Sparse Packed Single Precision Floating-Point

Values From Dense Memory, 5-170
VEXTRACTF128/VEXTRACTF32x4/VEXTRACTF64x2/VEXTRACT

F32x8/VEXTRACTF64x4— Extract Packed
Floating-Point Values, 5-172

VEXTRACTI128/VEXTRACTI32x4/VEXTRACTI64x2/VEXTRACTI3
2x8/VEXTRACTI64x4—Extract Packed Integer Values,
5-178

VEX.B, 3-3
VEX.L, 3-3, 3-4
VEX.mmmmm, 3-3
VEX.pp, 3-4
VEX.R, 3-4
VEX.W, 3-3
VEX.X, 3-3
VFCMADDCPH/VFMADDCPH—Complex Multiply and Accumulate

FP16 Values, 5-184
VFCMADDCSH/VFMADDCSH—Complex Multiply and Accumulate

Scalar FP16 Values, 5-187
VFCMULCPH/VFMULCPH—Complex Multiply FP16 Values, 5-189
VFCMULCSH/VFMULCSH—Complex Multiply Scalar FP16 Values,

5-193
VFIXUPIMMPD—Fix Up Special Packed Float64 Values, 5-195
VFIXUPIMMPS—Fix Up Special Packed Float32 Values, 5-199
VFIXUPIMMSD—Fix Up Special Scalar Float64 Value, 5-203
VFIXUPIMMSS—Fix Up Special Scalar Float32 Value, 5-207
VFMADD132PD/VFMADD213PD/VFMADD231PD—Fused

Multiply-Add of Packed Double Precision Floating-Point
Values, 5-211

VFMADD132PS/VFMADD213PS/VFMADD231PS—Fused
Multiply-Add of Packed Single Precision Floating-Point
Values, 5-224

VFMADD132SD/VFMADD213SD/VFMADD231SD—Fused
Multiply-Add of Scalar Double Precision Floating-Point
Values, 5-230

VFMADD132SS/VFMADD213SS/VFMADD231SS—Fused
Multiply-Add of Scalar Single Precision Floating-Point
Values, 5-236

VFMADDSUB132PD/VFMADDSUB213PD/VFMADDSUB231PD—F
used Multiply-Alternating Add/Subtract of Packed
Double Precision Floating-Point Values, 5-239

VFMADDSUB132PH/VFMADDSUB213PH/VFMADDSUB231PH—F
used Multiply-Alternating Add/Subtract of Packed FP16
Values, 5-247

VFMADDSUB132PS/VFMADDSUB213PS/VFMADDSUB231PS—Fu
sed Multiply-Alternating Add/Subtract of Packed Single
Precision Floating-Point Values, 5-252

VFMSUB132PS/VFMSUB213PS/VFMSUB231PS— Fused
Multiply-Subtract of Packed Single Precision
Floating-Point Values, 5-273

VFMSUB132SD/VFMSUB213SD/VFMSUB231SD— Fused
Multiply-Subtract of Scalar Double Precision
Floating-Point Values, 5-280

VFMSUB132SS/VFMSUB213SS/VFMSUB231SS—Fused
Multiply-Subtract of Scalar Single Precision
Floating-Point Values, 5-286

VFMSUBADD132PD/VFMSUBADD213PD/VFMSUBADD231PD—F
used Multiply-Alternating Subtract/Add of Packed
Double Precision Floating-Point Values, 5-289

Vol. 2D INDEX-11

INDEX

VFMSUBADD132PH/VFMSUBADD213PH/VFMSUBADD231PH—F
used Multiply-Alternating Subtract/Add of Packed FP16
Values, 5-296

VFMSUBADD132PS/VFMSUBADD213PS/VFMSUBADD231PS—Fu
sed Multiply-Alternating Subtract/Add of Packed Single
Precision Floating-Point Values, 5-301

VFNMADD132PD/VFMADD213PD/VFMADD231PD —Fused
Negative Multiply-Add of Packed Double Precision
Floating-Point Values, 5-309

VFNMADD132PS/VFNMADD213PS/VFNMADD231PS—Fused
Negative Multiply-Add of Packed Single Precision
Floating-Point Values, 5-316

VFNMADD132SD/VFNMADD213SD/VFNMADD231SD—Fused
Negative Multiply-Add of Scalar Double Precision
Floating-Point Values, 5-323

VFNMADD132SS/VFNMADD213SS/VFNMADD231SS—Fused
Negative Multiply-Add of Scalar Single Precision
Floating-Point Values, 5-326

VFNMSUB132PD/VFNMSUB213PD/VFNMSUB231PD—Fused
Negative Multiply-Subtract of Packed Double Precision
Floating-Point Values, 5-329

VFNMSUB132PS/VFNMSUB213PS/VFNMSUB231PS—Fused
Negative Multiply-Subtract of Packed Single Precision
Floating-Point Values, 5-336

VFNMSUB132SD/VFNMSUB213SD/VFNMSUB231SD—Fused
Negative Multiply-Subtract of Scalar Double Precision
Floating-Point Values, 5-343

VFNMSUB132SS/VFNMSUB213SS/VFNMSUB231SS—Fused
Negative Multiply-Subtract of Scalar Single Precision
Floating-Point Values, 5-346

VFPCLASSPD—Tests Types of Packed Float64 Values, 5-349
VFPCLASSPH—Test Types of Packed FP16 Values, 5-352
VFPCLASSPS—Tests Types of Packed Float32 Values, 5-355
VFPCLASSSD—Tests Type of a Scalar Float64 Value, 5-357
VFPCLASSSH—Test Types of Scalar FP16 Values, 5-359
VFPCLASSSS—Tests Type of a Scalar Float32 Value, 5-360
VGATHERDPD/VGATHERQPD—Gather Packed Double Precision

Floating-Point Values Using Signed Dword/Qword
Indices, 5-362

VGATHERDPS/VGATHERDPD—Gather Packed Single, Packed
Double with Signed Dword, 5-366

VGATHERDPS/VGATHERQPS—Gather Packed SP FP values Using
Signed Dword/Qword Indices, 5-369

VGATHERQPS/VGATHERQPD—Gather Packed Single, Packed
Double with Signed Qword Indices, 5-373

VGETEXPPD—Convert Exponents of Packed Double Precision
Floating-Point Values to Double Precision Floating-Point
Values, 5-376

VGETEXPPH—Convert Exponents of Packed FP16 Values to FP16
Values, 5-380

VGETEXPPS—Convert Exponents of Packed Single Precision
Floating-Point Values to Single Precision Floating-Point
Values, 5-383

VGETEXPSD—Convert Exponents of Scalar Double Precision
Floating-Point Value to Double Precision Floating-Point
Value, 5-387

VGETEXPSH—Convert Exponents of Scalar FP16 Values to FP16
Values, 5-389

VGETEXPSS—Convert Exponents of Scalar Single Precision
Floating-Point Value to Single Precision Floating-Point
Value, 5-391

VGETMANTPD—Extract Float64 Vector of Normalized Mantissas
From Float64 Vector, 5-393

VGETMANTPH—Extract FP16 Vector of Normalized Mantissas
from FP16 Vector, 5-397

VGETMANTPS—Extract Float32 Vector of Normalized Mantissas
From Float32 Vector, 5-401

VGETMANTSD—Extract Float64 of Normalized Mantissas From
Float64 Scalar, 5-404

VGETMANTSH—Extract FP16 of Normalized Mantissa from FP16
Scalar, 5-406

VGETMANTSS—Extract Float32 Vector of Normalized Mantissa
From Float32 Vector, 5-408

VINSERTF128/VINSERTF32x4/VINSERTF64x2/VINSERTF32x8/
VINSERTF64x4—Insert Packed Floating-Point Values,
5-410

VINSERTI128/VINSERTI32x4/VINSERTI64x2/VINSERTI32x8/VIN
SERTI64x4—Insert Packed Integer Values, 5-415

Virtual Machine Monitor, 7-1
VM (virtual 8086 mode) flag, EFLAGS register, 3-546
VMASKMOV—Conditional SIMD Packed Loads and Stores, 5-420
VMAXPH—Return Maximum of Packed FP16 Values, 5-423
VMAXSH—Return Maximum of Scalar FP16 Values, 5-425
VMINPH—Return Minimum of Packed FP16 Values, 5-427
VMINSH—Return Minimum Scalar FP16 Value, 5-429
VMM, 7-1
VMOVSH—Move Scalar FP16 Value, 5-431
VMOVW—Move Word, 5-433
VMULPH—Multiply Packed FP16 Values, 5-434
VMULSH—Multiply Scalar FP16 Values, 5-436
VP2INTERSECTD/VP2INTERSECTQ—Compute Intersection

Between DWORDS/QUADWORDS to a Pair of Mask
Registers, 5-437

VPBLENDD—Blend Packed Dwords, 5-439
VPBLENDMB/VPBLENDMW—Blend Byte/Word Vectors Using an

Opmask Control, 5-441
VPBLENDMD/VPBLENDMQ—Blend Int32/Int64 Vectors Using an

OpMask Control, 5-443
VPBROADCASTB/W/D/Q—Load With Broadcast Integer Data From

General Purpose Register, 5-455
VPBROADCAST—Load Integer and Broadcast, 5-446
VPBROADCASTM—Broadcast Mask to Vector Register, 5-458
VPCMPB/VPCMPUB—Compare Packed Byte Values Into Mask,

5-460
VPCMPD/VPCMPUD—Compare Packed Integer Values Into Mask,

5-463
VPCMPQ/VPCMPUQ—Compare Packed Integer Values into Mask,

5-466
VPCMPW/VPCMPUW—Compare Packed Word Values Into Mask,

5-469
VPCOMPRESSB/VCOMPRESSW—Store Sparse Packed Byte/Word

Integer Values Into Dense Memory/Register, 5-472
VPCOMPRESSD—Store Sparse Packed Doubleword Integer Values

Into Dense Memory/Register, 5-475
VPCOMPRESSQ—Store Sparse Packed Quadword Integer Values

Into Dense Memory/Registe, 5-477
VPCONFLICTD/Q—Detect Conflicts Within a Vector of Packed

Dword/Qword Values Into Dense Memory/ Register,
5-479

VPDPBUSD—Multiply and Add Unsigned and Signed Bytes, 5-485
VPDPBUSDS—Multiply and Add Unsigned and Signed Bytes With

Saturation, 5-488
VPDPWSSD—Multiply and Add Signed Word Integers, 5-491
VPDPWSSDS—Multiply and Add Signed Word Integers With

Saturation, 5-493
VPERM2F128—Permute Floating-Point Values, 5-498
VPERM2I128—Permute Integer Values, 5-500
VPERMB—Permute Packed Bytes Elements, 5-502
VPERMD/VPERMW—Permute Packed Doubleword/Word Elements

, 5-504

INDEX

INDEX-12 Vol. 2D

VPERMI2B—Full Permute of Bytes From Two Tables Overwriting
the Index, 5-507

VPERMI2W/D/Q/PS/PD—Full Permute From Two Tables
Overwriting the Index, 5-509

VPERMILPD—Permute In-Lane of Pairs of Double Precision
Floating-Point Values, 5-515

VPERMILPS—Permute In-Lane of Quadruples of Single Precision
Floating-Point Values, 5-521

VPERMPD—Permute Double Precision Floating-Point Elements,
5-526

VPERMPS—Permute Single Precision Floating-Point Elements,
5-530

VPERMQ—Qwords Element Permutation, 5-533
VPERMT2B—Full Permute of Bytes From Two Tables Overwriting

a Table, 5-537
VPERMT2W/D/Q/PS/PD—Full Permute From Two Tables

Overwriting One Table, 5-539
VPEXPANDB/VPEXPANDW—Expand Byte/Word Values, 5-545
VPEXPANDD—Load Sparse Packed Doubleword Integer Values

From Dense Memory/Register, 5-548
VPEXPANDQ—Load Sparse Packed Quadword Integer Values

From Dense Memory/Register, 5-550
VPGATHERDD/VPGATHERDQ—Gather Packed Dword, Packed

Qword With Signed Dword Indices, 5-552
VPGATHERDD/VPGATHERQD—Gather Packed Dword Values

Using Signed Dword/Qword Indices, 5-555
VPGATHERDQ/VPGATHERQQ—Gather Packed Qword values

Using Signed Dword/Qword Indices, 5-559
VPGATHERQD/VPGATHERQQ—Gather Packed Dword, Packed

Qword with Signed Qword Indices, 5-563
VPLZCNTD/Q—Count the Number of Leading Zero Bits for Packed

Dword, Packed Qword Values, 5-566
VPMADD52HUQ—Packed Multiply of Unsigned 52-Bit Unsigned

Integers and Add High 52-Bit Products to 64-Bit
Accumulators, 5-569

VPMADD52LUQ—Packed Multiply of Unsigned 52-Bit Integers and
Add the Low 52-Bit Products to Qword Accumulators,
5-572

VPMASKMOV—Conditional SIMD Integer Packed Loads and Stores
, 5-575

VPMOVB2M/VPMOVW2M/VPMOVD2M/VPMOVQ2M—Convert a
Vector Register to a Mask, 5-578

VPMOVDB/VPMOVSDB/VPMOVUSDB - Down Convert DWord to
Byte, 5-581

VPMOVDB/VPMOVSDB/VPMOVUSDB—Down Convert DWord to
Byte, 5-581

VPMOVDW/VPMOVSDW/VPMOVUSDW - Down Convert DWord to
Word, 5-585

VPMOVDW/VPMOVSDW/VPMOVUSDW—Down Convert DWord to
Word, 5-585

VPMOVM2B/VPMOVM2W/VPMOVM2D/VPMOVM2Q—Convert a
Mask Register to a Vector Register, 5-589

VPMOVQB/VPMOVSQB/VPMOVUSQB - Down Convert QWord to
Byte, 5-592

VPMOVQB/VPMOVSQB/VPMOVUSQB—Down Convert QWord to
Byte, 5-592

VPMOVQD/VPMOVSQD/VPMOVUSQD - Down Convert QWord to
DWord, 5-596

VPMOVQD/VPMOVSQD/VPMOVUSQD—Down Convert QWord to
DWord, 5-596

VPMOVQW/VPMOVSQW/VPMOVUSQW - Down Convert QWord to
Word, 5-600

VPMOVQW/VPMOVSQW/VPMOVUSQW—Down Convert QWord to
Word, 5-600

VPMOVWB/VPMOVSWB/VPMOVUSWB—Down Convert Word to
Byte, 5-604

VPMULTISHIFTQB—Select Packed Unaligned Bytes From
Quadword Sources, 5-608

VPOPCNT—Return the Count of Number of Bits Set to 1 in
BYTE/WORD/DWORD/QWORD, 5-610

VPROLD/VPROLVD/VPROLQ/VPROLVQ—Bit Rotate Left, 5-614
VPRORD/VPRORVD/VPRORQ/VPRORVQ—Bit Rotate Right, 5-618
VPSCATTERDD/VPSCATTERDQ/VPSCATTERQD/VPSCATTERQQ—

Scatter Packed Dword, Packed Qword with Signed
Dword, Signed Qword Indices, 5-622

VPSHLD—Concatenate and Shift Packed Data Left Logical, 5-626
VPSHLDV—Concatenate and Variable Shift Packed Data Left

Logical, 5-629
VPSHRD—Concatenate and Shift Packed Data Right Logical, 5-632
VPSHRDV—Concatenate and Variable Shift Packed Data Right

Logical, 5-635
VPSHUFBITQMB—Shuffle Bits From Quadword Elements Using

Byte Indexes Into Mask, 5-638
VPSLLVW/VPSLLVD/VPSLLVQ—Variable Bit Shift Left Logical,

5-640
VPSRAVW/VPSRAVD/VPSRAVQ—Variable Bit Shift Right

Arithmetic, 5-645
VPSRLVW/VPSRLVD/VPSRLVQ—Variable Bit Shift Right Logical,

5-650
VPTERNLOGD/VPTERNLOGQ—Bitwise Ternary Logic, 5-655
VPTESTMB/VPTESTMW/VPTESTMD/VPTESTMQ—Logical AND

and Set Mask, 5-658
VPTESTNMB/W/D/Q—Logical NAND and Set, 5-661
VRANGEPD—Range Restriction Calculation for Packed Pairs of

Float64 Values, 5-665
VRANGESD—Range Restriction Calculation From a Pair of Scalar

Float64 Values, 5-672
VRANGESS—Range Restriction Calculation From a Pair of Scalar

Float32 Values, 5-675
VRCP14PD—Compute Approximate Reciprocals of Packed Float64

Values, 5-678
VRCP14PS—Compute Approximate Reciprocals of Packed Float32

Values, 5-680
VRCP14SD—Compute Approximate Reciprocal of Scalar Float64

Value, 5-682
VRCP14SS—Compute Approximate Reciprocal of Scalar Float32

Value, 5-684
VRCPPH—Compute Reciprocals of Packed FP16 Values, 5-686
VRCPSH—Compute Reciprocal of Scalar FP16 Value, 5-688
VREDUCEPD—Perform Reduction Transformation on Packed

Float64 Values, 5-689
VREDUCEPH—Perform Reduction Transformation on Packed FP16

Values, 5-692
VREDUCESD—Perform a Reduction Transformation on a Scalar

Float64 Value, 5-697
VREDUCESH—Perform Reduction Transformation on Scalar FP16

Value, 5-699
VREDUCESS—Perform Reduction Transformation on a Scalar

Float32 Value, 5-701
VRNDSCALEPD—Round Packed Float64 Values to Include a Given

Number of Fraction Bits, 5-703
VRNDSCALEPH—Round Packed FP16 Values to Include a Given

Number of Fraction Bits, 5-706
VRNDSCALEPS—Round Packed Float32 Values to Include a Given

Number of Fraction Bits, 5-709
VRNDSCALESD—Round Scalar Float64 Value to Include a Given

Number of Fraction Bits, 5-712
VRNDSCALESH—Round Scalar FP16 Value to Include a Given

Number of Fraction Bits, 5-714

Vol. 2D INDEX-13

INDEX

VRNDSCALESS—Round Scalar Float32 Value to Include a Given
Number of Fraction Bits, 5-716

VRSQRT14PD—Compute Approximate Reciprocals of Square
Roots of Packed Float64 Values, 5-718

VRSQRT14PS—Compute Approximate Reciprocals of Square
Roots of Packed Float32 Values, 5-720

VRSQRT14SD—Compute Approximate Reciprocal of Square Root
of Scalar Float64 Value, 5-722

VRSQRT14SS—Compute Approximate Reciprocal of Square Root
of Scalar Float32 Value, 5-724

VRSQRTPH—Compute Reciprocals of Square Roots of Packed
FP16 Values, 5-726

VRSQRTSH—Compute Approximate Reciprocal of Square Root of
Scalar FP16 Value, 5-728

VSCALEFPD—Scale Packed Float64 Values With Float64 Values,
5-729

VSCALEFPH—Scale Packed FP16 Values with FP16 Values, 5-732
VSCALEFPS—Scale Packed Float32 Values With Float32 Values,

5-735
VSCALEFSD—Scale Scalar Float64 Values With Float64 Values,

5-738
VSCALEFSH—Scale Scalar FP16 Values with FP16 Values, 5-740
VSCALEFSS—Scale Scalar Float32 Value With Float32 Value, 5-742
VSCATTERDPS/VSCATTERDPD/VSCATTERQPS/VSCATTERQPD—

Scatter Packed Single, Packed Double with Signed Dword
and Qword Indices, 5-744

VSCATTERPF1DPS/VSCATTERPF1QPS/VSCATTERPF1DPD/VSCA
TTERPF1QPD—Sparse Prefetch Packed SP/DP Data
Values with Signed Dword, Signed Qword Indices Using
T1 Hint with Intent to Write, 8-38

VSHUFF32x4/VSHUFF64x2/VSHUFI32x4/VSHUFI64x2—Shuffle
Packed Values at 128-Bit Granularity, 5-754

VSQRTPH—Compute Square Root of Packed FP16 Values, 5-769
VSQRTSH—Compute Square Root of Scalar FP16 Value, 5-771
VSUBPH—Subtract Packed FP16 Values, 5-772
VSUBSH—Subtract Scalar FP16 Value, 5-774
VTESTPD/VTESTPS—Packed Bit Test, 5-775
VUCOMISH—Unordered Compare Scalar FP16 Values and Set

EFLAGS, 5-778
VZEROALL—Zero XMM, YMM, and ZMM Registers, 5-779, 5-780

W
WAIT/FWAIT instructions, 6-2
GETSEC, 7-4
WBINVD instruction, 6-3, 6-5
WBINVD/INVD bit, 3-223
Write-back and invalidate caches, 6-3
WRMSR instruction, 6-9, 6-11, 6-13

CPUID flag, 3-251

X
x87 FPU

checking for pending x87 FPU exceptions, 6-2
constants, 3-411
initialization, 3-402
instruction opcodes, A-20

x87 FPU control word
loading, 3-413, 3-415
RC field, 3-404, 3-411, 3-443
restoring, 3-430
saving, 3-432, 3-447
storing, 3-445

x87 FPU data pointer, 3-415, 3-430, 3-432, 3-447

x87 FPU instruction pointer, 3-415, 3-430, 3-432, 3-447
x87 FPU last opcode, 3-415, 3-430, 3-432, 3-447
x87 FPU status word

condition code flags, 3-381, 3-397, 3-457, 3-459, 3-462
loading, 3-415
restoring, 3-430
saving, 3-432, 3-447, 3-449
TOP field, 3-401
x87 FPU flags affected by instructions, 3-15

x87 FPU tag word, 3-415, 3-430, 3-432, 3-447
XABORT - Transaction Abort, 6-21
XADD instruction, 3-619, 6-27
XCHG instruction, 3-619, 6-32
XCR0, 6-70, 6-71
XEND - Transaction End, 6-34
XGETBV, 6-36, 6-49, 6-54, B-41
XLAB instruction, 6-38
XLAT instruction, 6-38
XOR instruction, 3-619, 6-40
XORPD- Bitwise Logical XOR of Packed Double Precision

Floating-Point Values, 6-42
XORPS- Bitwise Logical XOR of Packed Single Precision

Floating-Point Values, 5-780, 6-45
XRSTOR, B-41
XSAVE, 6-36, 6-52, 6-53, 6-56, 6-57, 6-58, 6-59, 6-60, 6-61, 6-62,

6-63, 6-64, 6-66, 6-67, 6-69, 6-70, 6-71, B-41
XSETBV, 6-64, 6-70, B-41
XTEST - Test If In Transactional Execution, 6-73

Z
ZF (zero) flag, EFLAGS register, 3-212, 3-589, 3-624, 3-627, 4-563,

5-166
VF, 5-218, 5-233, 5-267, 5-283

INDEX

INDEX-14 Vol. 2D

	Chapter 6 Instruction Set Reference, W-Z
	6.1 Instructions (W-Z)
	WAIT/FWAIT—Wait
	WBINVD—Write Back and Invalidate Cache
	WBNOINVD—Write Back and Do Not Invalidate Cache
	WRFSBASE/WRGSBASE—Write FS/GS Segment Base
	WRMSR—Write to Model Specific Register
	WRMSRLIST—Write List of Model Specific Registers
	WRMSRNS—Non-Serializing Write to Model Specific Register
	WRPKRU—Write Data to User Page Key Register
	WRSSD/WRSSQ—Write to Shadow Stack
	WRUSSD/WRUSSQ—Write to User Shadow Stack
	XABORT—Transactional Abort
	XACQUIRE/XRELEASE—Hardware Lock Elision Prefix Hints
	XADD—Exchange and Add
	XBEGIN—Transactional Begin
	XCHG—Exchange Register/Memory With Register
	XEND—Transactional End
	XGETBV—Get Value of Extended Control Register
	XLAT/XLATB—Table Look-up Translation
	XOR—Logical Exclusive OR
	XORPD—Bitwise Logical XOR of Packed Double Precision Floating-Point Values
	XORPS—Bitwise Logical XOR of Packed Single Precision Floating-Point Values
	XRESLDTRK—Resume Tracking Load Addresses
	XRSTOR—Restore Processor Extended States
	XRSTORS—Restore Processor Extended States Supervisor
	XSAVE—Save Processor Extended States
	XSAVEC—Save Processor Extended States With Compaction
	XSAVEOPT—Save Processor Extended States Optimized
	XSAVES—Save Processor Extended States Supervisor
	XSETBV—Set Extended Control Register
	XSUSLDTRK—Suspend Tracking Load Addresses
	XTEST—Test if in Transactional Execution

	Chapter 7 Safer Mode Extensions Reference
	7.1 Overview
	7.2 SMX Functionality
	7.2.1 Detecting and Enabling SMX
	7.2.2 SMX Instruction Summary
	7.2.2.1 GETSEC[CAPABILITIES]
	7.2.2.2 GETSEC[ENTERACCS]
	7.2.2.3 GETSEC[EXITAC]
	7.2.2.4 GETSEC[SENTER]
	7.2.2.5 GETSEC[SEXIT]
	7.2.2.6 GETSEC[PARAMETERS]
	7.2.2.7 GETSEC[SMCTRL]
	7.2.2.8 GETSEC[WAKEUP]

	7.2.3 Measured Environment and SMX

	7.3 GETSEC Leaf Functions
	GETSEC[CAPABILITIES]—Report the SMX Capabilities
	GETSEC[ENTERACCS]—Execute Authenticated Chipset Code
	GETSEC[EXITAC]—Exit Authenticated Code Execution Mode
	GETSEC[SENTER]—Enter a Measured Environment
	GETSEC[SEXIT]—Exit Measured Environment
	GETSEC[PARAMETERS]—Report the SMX Parameters
	GETSEC[SMCTRL]—SMX Mode Control
	GETSEC[WAKEUP]—Wake Up Sleeping Processors in Measured Environment

	Chapter 8 Instruction Set Reference Unique to Intel® Xeon Phi™ Processors
	PREFETCHWT1—Prefetch Vector Data Into Caches With Intent to Write and T1 Hint
	V4FMADDPS/V4FNMADDPS—Packed Single Precision Floating-Point Fused Multiply-Add (4-Iterations)
	V4FMADDSS/V4FNMADDSS—Scalar Single Precision Floating-Point Fused Multiply-Add (4-Iterations)
	VEXP2PD—Approximation to the Exponential 2^x of Packed Double Precision Floating-Point Values With Less Than 2^-23 Relative Error
	VEXP2PS—Approximation to the Exponential 2^x of Packed Single Precision Floating-Point Values With Less Than 2^-23 Relative Error
	VGATHERPF0DPS/VGATHERPF0QPS/VGATHERPF0DPD/VGATHERPF0QPD—Sparse Prefetch Packed SP/DP Data Values With Signed Dword, Signed Qword Indices Using T0 Hint
	VGATHERPF1DPS/VGATHERPF1QPS/VGATHERPF1DPD/VGATHERPF1QPD—Sparse Prefetch Packed SP/DP Data Values With Signed Dword, Signed Qword Indices Using T1 Hint
	VP4DPWSSDS—Dot Product of Signed Words With Dword Accumulation and Saturation (4-Iterations)
	VP4DPWSSD—Dot Product of Signed Words With Dword Accumulation (4-Iterations)
	VRCP28PD—Approximation to the Reciprocal of Packed Double Precision Floating-Point Values With Less Than 2^-28 Relative Error
	VRCP28SD—Approximation to the Reciprocal of Scalar Double Precision Floating-Point Value With Less Than 2^-28 Relative Error
	VRCP28PS—Approximation to the Reciprocal of Packed Single Precision Floating-Point Values With Less Than 2^-28 Relative Error
	VRCP28SS—Approximation to the Reciprocal of Scalar Single Precision Floating-Point Value With Less Than 2^-28 Relative Error
	VRSQRT28PD—Approximation to the Reciprocal Square Root of Packed Double Precision Floating-Point Values With Less Than 2^-28 Relative Error
	VRSQRT28SD—Approximation to the Reciprocal Square Root of Scalar Double Precision Floating-Point Value With Less Than 2^-28 Relative Error
	VRSQRT28PS—Approximation to the Reciprocal Square Root of Packed Single Precision Floating-Point Values With Less Than 2^-28 Relative Error
	VRSQRT28SS—Approximation to the Reciprocal Square Root of Scalar Single Precision Floating- Point Value With Less Than 2^-28 Relative Error
	VSCATTERPF0DPS/VSCATTERPF0QPS/VSCATTERPF0DPD/VSCATTERPF0QPD—Sparse Prefetch Packed SP/DP Data Values with Signed Dword, Signed Qword Indices Using T0 Hint With Intent to Write
	VSCATTERPF1DPS/VSCATTERPF1QPS/VSCATTERPF1DPD/VSCATTERPF1QPD—Sparse Prefetch Packed SP/DP Data Values With Signed Dword, Signed Qword Indices Using T1 Hint With Intent to Write

	Appendix A Opcode Map
	A.1 Using Opcode Tables
	A.2 Key to Abbreviations
	A.2.1 Codes for Addressing Method
	A.2.2 Codes for Operand Type
	A.2.3 Register Codes
	A.2.4 Opcode Look-up Examples for One, Two, and Three-Byte Opcodes
	A.2.4.1 One-Byte Opcode Instructions
	A.2.4.2 Two-Byte Opcode Instructions
	A.2.4.3 Three-Byte Opcode Instructions
	A.2.4.4 VEX Prefix Instructions

	A.2.5 Superscripts Utilized in Opcode Tables

	A.3 One, Two, and THREE-Byte Opcode Maps
	A.4 Opcode Extensions For One-Byte And Two-byte Opcodes
	A.4.1 Opcode Look-up Examples Using Opcode Extensions
	A.4.2 Opcode Extension Tables

	A.5 Escape Opcode Instructions
	A.5.1 Opcode Look-up Examples for Escape Instruction Opcodes
	A.5.2 Escape Opcode Instruction Tables
	A.5.2.1 Escape Opcodes with D8 as First Byte
	A.5.2.2 Escape Opcodes with D9 as First Byte
	A.5.2.3 Escape Opcodes with DA as First Byte
	A.5.2.4 Escape Opcodes with DB as First Byte
	A.5.2.5 Escape Opcodes with DC as First Byte
	A.5.2.6 Escape Opcodes with DD as First Byte
	A.5.2.7 Escape Opcodes with DE as First Byte
	A.5.2.8 Escape Opcodes with DF As First Byte

	Appendix B Instruction Formats and Encodings
	B.1 Machine Instruction Format
	B.1.1 Legacy Prefixes
	B.1.2 REX Prefixes
	B.1.3 Opcode Fields
	B.1.4 Special Fields
	B.1.4.1 Reg Field (reg) for Non-64-Bit Modes
	B.1.4.2 Reg Field (reg) for 64-Bit Mode
	B.1.4.3 Encoding of Operand Size (w) Bit
	B.1.4.4 Sign-Extend (s) Bit
	B.1.4.5 Segment Register (sreg) Field
	B.1.4.6 Special-Purpose Register (eee) Field
	B.1.4.7 Condition Test (tttn) Field
	B.1.4.8 Direction (d) Bit

	B.1.5 Other Notes

	B.2 General-Purpose Instruction Formats and Encodings for Non- 64-Bit Modes
	B.2.1 General Purpose Instruction Formats and Encodings for 64-Bit Mode

	B.3 Pentium® Processor Family Instruction Formats and Encodings
	B.4 64-bit Mode Instruction Encodings for SIMD Instruction Extensions
	B.5 MMX Instruction Formats and Encodings
	B.5.1 Granularity Field (gg)
	B.5.2 MMX Technology and General-Purpose Register Fields (mmxreg and reg)
	B.5.3 MMX Instruction Formats and Encodings Table

	B.6 Processor Extended State Instruction Formats and Encodings
	B.7 P6 Family Instruction Formats and Encodings
	B.8 SSE Instruction Formats and Encodings
	B.9 SSE2 Instruction Formats and Encodings
	B.9.1 Granularity Field (gg)

	B.10 SSE3 Formats and Encodings Table
	B.11 SSsE3 Formats and Encoding Table
	B.12 AESNI and PCLMULQDQ INstruction Formats and Encodings
	B.13 Special Encodings for 64-Bit Mode
	B.14 SSE4.1 Formats and Encoding Table
	B.15 SSE4.2 Formats and Encoding Table
	B.16 AVX Formats and Encoding Table
	B.17 Floating-Point Instruction Formats and Encodings
	B.18 VMX Instructions
	B.19 SMX Instructions

	Appendix C Intel® C/C++ Compiler Intrinsics and Functional Equivalents
	C.1 Simple Intrinsics
	C.2 Composite Intrinsics

